• Title/Summary/Keyword: Field-activation

Search Result 637, Processing Time 0.022 seconds

Functional MRI of Visual Cortex: Correlation between Photic Stimulator Size and Cortex Activation (시각피질의 기능적 MR 연구: 광자극 크기와 피질 활성화와의 관계)

  • 김경숙;이호규;최충곤;서대철
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Purpose: Functional MR imaging is the method of demonstrating changes in regional cerebral blood flow produced by sensory, motor, and any other tasks. Functional MR of visual cortex is performed as a patient stares a photic stimulation, so adaptable photic stimulation is necessary. The purpose of this study is to evaluate whether the size of photic stimulator can affect the degree of visual cortex activation. Materials and Methods: Functional MR imaging was performed in 5 volunteers with normal visual acuity. Photic stimulator was made by 39 light-emitting diodes on a plate, operating at 8Hz. The sizes of photic stimulator were full field, half field and focal central field. The MR imager was Siemens 1.5-T Magnetom Vision system, using standard head coil. Functional MRI utilized EPI sequence (TR/TE= 1.0/51. Omsec, matrix $No.=98{\times}128$, slice thickness=8mm) with 3sets of 6 imaging during stimulation and 6 imaging during rest, all 36 scannings were obtained. Activation images were obtained using postprocessing software(statistical analysis by Z-score), and these images were combined with T-1 weighted anatomical images. The activated signals were quantified by numbering the activated pixels, and activation a index was obtained by dividing the pixel number of each stimulator size with the sum of the pixel number of 3 study using 3 kinds of stimulators. The correlation between the activation index and the stimulator size was analysed. Results: Mean increase of signal intensities on the activation area using full field photic stimulator was about 9.6%. The activation index was greatest on full field, second on half field and smallest on focal central field in 4. The index of half field was greater than that of full field in 1. The ranges of activation index were full field 43-73%(mean 55%), half field 22-40 %(mean 32%), and focal central field 5-24%(mean 13%). Conclusion: The degree of visual cortex activation increases with the size of photic stimulator.

  • PDF

Effect of Alternating Magnetic Field on Ion Activation in Low Temperature Polycrystalline Silicon Technology

  • Hwang, Jin Ha;Lim, Tae Hyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Statistical design of experiments was successfully employed to investigate the effect of alternating magnetic field on activation of polycrystalline Si (p-Si) doped as n-type using $\textrm{PH}_3$, by full factorial design of three factors with two levels. In this design, the input variables are graphite size, alternating current, and activation time. The output parameter, sheet resistance, is analyzed in terms of the primary effects and multi-factor interactions. Notably, the three-factor interaction is calculated to be a dominant interaction. The interaction between graphite size and activation time and the main effect of current are important effects compared to the other variables and relevant interactions. Alternating magnetic flux activation is proved a significantly beneficial processing technique.

  • PDF

Magnetic Field Dependence of the Activation Volume for Sr-ferrite Particles (Sr-페라이트 자성 입자의 활성화 부피의 자기장 의존성)

  • Kim, Hyeon Soo;Jeong, Soon Young;Kim, Kyung Min;Kwon, Hae-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.196-200
    • /
    • 2016
  • In this study the mechanisms of magnetization reversal and magnetic interaction effects on activation volumes for Sr-ferrite with different particle sizes are investigated. The activation volumes of C2 sample are larger than those of C3 sample in the range of low magnetic fields. But the fields above the coercivity of sample C2, the activation volumes of both samples are decreased linearly with increasing the applied magnetic field. These phenomena can be explained by the strengths of two critical fields representing the reverse domain nucleation field and the domain wall pinning field as well as the strength of dipolar interaction.

Field assisted dopant activation of ion shower doped Poly-Si

  • Kim, Eun-Seok;Kim, Dae-Sup;Ryu, Seung-Wook;Ro, Jae-Sang;Choi, Kyu-Hwan;Lee, Ki-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.907-909
    • /
    • 2003
  • We report a novel method of activation-annealing, named as induction annealing (IA). IA is realized by applying alternating electric field induced by alternatingmagnetic filed applied to the sample. We observed the enhanced kinetics of dopant activation by using IA.

  • PDF

Time-resolved Observation of Field-dependent Magnetization Reversal Behavior in Co/Pd Multilayer Film

  • Ryu, Kwang-Su;Lee, Kyeong-Dong;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.108-112
    • /
    • 2003
  • We report the experimental finding that there exists a transition of magnetization reversal process with varying the applied field in Co/Pd multilayer. We have measured the wall-motion speed V and the nucleation rate R during magnetization reversal via time-resolved direct domain observation, where the magnetization reversal process of Co/Pd multilayer is found to take a transition from thermal activation process to viscous process at the critical field of about 1.87 H$\_$C/ (coercivity). In the thermal activation regime, we find that the field dependences of two activation volumes for the wall-motion process and the nucleation process are different with each other, which reveals that the wall-motion and nucleation experience completely different interactions. In the viscous regime, we find that the wall-mobility is much smaller than a typical value for the sandwiched Co films, which implies that the Co/Pd interfaces in multilayer substantially contribute to the dynamic dissipation.

MAGNETIC FIELD DEPENDENCE OF MAGNETIZATION REVERSAL BEHAVIOR IN Co/Pt MULTILAYERS.

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.279-286
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers has been quantitatively investigated. Serial samples of Co/Pt multilayers have been prepared by dc-magnetron sputtering under various Ar pressure. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both and R were found to be exponentially dependent on the reversing applied field. From the exponential dependencies, the activation volumes of the wall motion and nucleation could be determined based on a thermally activated relaxation model, and the wall-motion activation volume was revealed to be slightly larger than the nucleation activation volume.

  • PDF

Unequal Activation Volumes of Wall-motion and Nucleation Process in Co/Pt Multilayers

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.116-119
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers was quantitatively investigated. Serial samples of Co/Pt multilayers were prepared by dc-magnetron sputtering under various Ar pressures. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed V and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both V and R were found to be exponentially dependent on the applied reversing field. From the exponential dependencies, the activation volumes for wall motion and nucleation could be determined, based on a thermally activated relaxation model, and the wall-motion activation volume was found to be slightly larger than the nucleation activation volume.

  • PDF

Science Field Trip Activation Plan through the Survey of Science Museum Field Trip (과학관 현장학습 실태조사를 통한 과학 현장학습 활성화 방안)

  • Kwon, Chi-Soon;Kim, Jang-Hwan
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.142-150
    • /
    • 2011
  • This study is aimed to offer the elementary school teacher's experience and awareness about science field trip and science museum field trip, by analyzing the survey of 867 students and 81 teachers in Seoul. Research shows 67.9% high figure of elementary school teacher's experience on science field trip. That experience is include 61.8% of science museum using experience. In case of elementary school teacher's pre-activity is only 53.1% and most of them was visiting Website. Post-activity is more than preceding activity(74.1%) but method is too simple like checking work sheets. 62.3% of elementary school students have been to science field trip and science museum that is higher than teachers'. 66.5% of students said science field trip is influence on science study in good ways but there are some difficulties like lack of pre-activity(33.0%) and unkind information about science museum(21.9%). For activation of science field trip, resources development for effective science field trip operating, program development for pre- and post-activity, school group science field trip program development which is linked science curriculum, complement and expand activity information of science field trip institution.

Activation Volumes of Wall-Motion and Nucleation Processes in Co/Pd Multilayers

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The correlation between the activation volumes of wall-motion and nucleation processes in Co/Pd multilayers has been investigated. Each activation volume was estimated from the field dependence of the wall-motion speed and the nucleation rate, respectively, based on time-resolved domain patterns grabbed by a MOKE microscope system. Both the activation volumes are changed in the same manner around $0.2\sim1.1\times10^{-17}cm^3$ with changes in the multilayered structure. Interestingly, the correlation between the activation volumes is sensitive to the multilayered structure; the wall-motion activation volume is smaller than the nucleation activation volume for a sample having a smaller number of repeats and a thinner Co-layer thickness, and vice versa. The correlation is closely related with the contrasting reversal modes; the process having the smaller activation volume dominates.

  • PDF

A Study of Targetry Activation and Dose Analysis of PET Cyclotron Using Monte Carlo Simulation (몬테카를로 모의 모사를 이용한 의료용 사이클로트론의 Targetry 방사화 및 피폭선량 분석)

  • Jang, Donggun;Kim, Dong hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.565-573
    • /
    • 2018
  • Cyclotron for medical purposes generates nuclear reaction by accelerating protons in high speed, in order to produce radiopharmaceuticals, and unnecessary neutrons are generated through such nuclear reaction. Neutrons cause activation in the parts of cyclotron which then cause exposure to radiation for people working in the field. This study, in that regard, aims to analyze exposure level by finding out the degree of activation of aluminum body, silver body, and havar foil which are the parts of Targetry where the nuclear reaction takes place. The results of the experiment showed that aluminum body and silver body had no problems re-using them as the energy and half-life of activated nuclides were small and short, making the affect on the people working in the field extremely low. However for havar foil, its activated nuclides had a high level of energy which resulted in high level of affect to the people working in the field. The activation factors of the cyclotron were analyzed, and the results showed that the Havar foil was activated the most among the targetry parts, and greatly exposed workers due to regular replacement, and needed special management as radioactive waste.