• Title/Summary/Keyword: Field vane test

Search Result 45, Processing Time 0.022 seconds

Estimation of Undrained Shear Strength of Clay under Failed Slope (사면파괴 하부 점토지반 비배수강도의 평가)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5572-5577
    • /
    • 2012
  • Results of in-situ test, laboratory test and strength prediction method for the soft soil underlain by failed road embankment were compared each other. Comparing cone penetration test results with the field vane test results it can be seen that cone factor is 12. Undrained shear strengths determined from the cone factor which was predicted by prediction equation were smaller than those obtained from field vane tests. Among the prediction methods Jamiolkowsky's method gave close strengths to the measured undrained shear strengths by field vane tests and strength ratio were 0.88~1.23.

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.

Comparative study of Dutchcone and piezocone test on soft ground (연약지반에 대한 기계식 및 전자식 콘관입시험 비교 연구)

  • 장병욱;김재현;김동범;윤상묵;원정윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.237-244
    • /
    • 2002
  • A comparative study of 134 mechanical (Dutch cone) and 9. electronic cone (Piezocone) penetration data from the southern part of Korea has been performed. In general, Dutch cone results may be different from piezocone results due to the difference in structure of the cones. Cone penetrometer test data were analyzed and plotted in soil classification chart proposed by Robertson et. al.(1986,1990) Cone factors of Dutch cone and piezocone test have empirically been determined using laboratory and field vane test results. Using this cone factors, it was shown that there was good correlation between shear strength estimated using cone resistance and that of laboratory test and field vane tests. It was found that there was a good correlation between cone resistance from Dutch cone and that from piezocone. Dutch cone test provides a useful means for stratigraphic profiling in large project and has some advantage over piezocone in particular situations, such as very soft clay ground and dredged area.

  • PDF

Estimation of Soft Ground Piezocone Factors at Gwangyang, Jeonnam (전남 광양지역 연약지반의 피에조콘계수 산정)

  • Oh, Dongchoon;Kim, Kibeom;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Using the results from laboratory soil test, field vane test and piezocone penetration test, the engineering characteristics of the soft ground at east side of Gwangyang Port, which is located at south coast of Jeollanam-do, were investigated and optimal piezocone penetration test depth was derived to calculate piezocone factor. In this paper, the results of 61 laboratory soil tests, 226 times of field vane tests and 26 piezocone penetration tests were used. The result of laboratory soil test suggested that some physical properties such as specific gravity, moisture content, liquid limit and plastic index and others are higher than other south coast regions, meanwhile uniaxial compression strength, undrained shear strength, defined as mechanical property, appeared to be relatively small, distributed widely. According to the plastic chart, the ground was classified as high compressibility clay and low compressibility clay, mostly represent to Type 3 clay by Robertson (1990)'s classification chart. Piezocone factor was calculated by empirical method, based on the undrained shear strength which was obtained by the field vane test. According to the analysis with 3 different depth range, to set the appropriate measured depth range of piezocone penetration for comparation, using average value of the range of 5 times the vane length showed the highest correlation.

Comparative Study of Dutch Cone and Piezocone Penetration Test on Soft Ground (연약지반에 대한 더치콘과 피에조콘 관입시험 비교 연구)

  • 원정윤;장병욱;우철웅;윤상묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.96-106
    • /
    • 2003
  • 134 Dutch cone (mechanical cone) and 9 piezocone (electronic cone) penetration tests have been performed in the southwestern part of Korea. In general, Dutch cone results may be different from that of piezocone due to the difference in structure of the cones. 6 Dutch cone and piezocone test data which were obtained at the same point respectively, were analyzed and plotted in soil classification chart proposed by Robertson et. al.(1986, 1990). Cone factors of Dutch cone and piezocone test empirically have been determined using laboratory and field vane test results. Using this cone factors, it was shown that there was good correlation between shear strength estimated using cone resistance and that of laboratory test and field vane tests. It was found that there was a good correlation between cone resistance from Dutch cone and that from piezocone. Relationship formula was also suggested. Dutch cone test provides a useful means for stratigraphic profiling in large project and has some advantage over piezocone in particular situations, such as very soft clay ground and dredged area.

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산지역 점토의 비배수 전단강도 특성)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.71-78
    • /
    • 2000
  • SHANSEP method involves the consolidation to stresses in excess of the preconsolidation pressure in order to overcome sample disturbance effect. The concept of SHANSEP is based on an approach to laboratory test which attempts to reproduce the in-situ conditions more closely than is possible in routine tests and evaluates normalized strength parameters for the soil as a function of OCR. But SHANSEP method can be applied only to fairly uniform clay deposits, and is unsuitable for a random deposit. In this study, CK/sub o/U triaxial compression test and incremental loading consolidation test were performed for the application of SHANSEP method on Yangsan clay. During the K/sub o/-consolidation, triaxial specimens were consolidated to stress equal to two times the in-situ vertical effective stress. And for overconsolidated condition, the specimens were swelled to a known vertical effective stress in order to have the desired OCR. With the results of CK/sub o/U triaxial compression test using the block samples, the relationship between c/sub u//σ/sub vc/' and OCR on Yangsan clay was established. For evaluating the undrained shear strength of Yangsan clay with depth, CK/sub o/U triaxial compression test was performed using the piston samples taken from Yangsan site. And also undrained shear strength was analyzed from the in-situ test such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that of CK/sub o/U triaxial compression test.

  • PDF

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF