• Title/Summary/Keyword: Field strength

Search Result 3,479, Processing Time 0.028 seconds

Correlation between Density and Magnetic Field in Compressible MHD Turbulence

  • Yoon, Hee-Sun;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • Most astrophysical systems are turbulent and magnetized. Magnetic field plays an important role in the dynamics of ISM and influence all of properties of astrophysical system. Information of magnetic field is very important to understand properties of astrophysical systems. For example, one way to obtain information of magnetic field is to use Rotation Measure. Mean strength of the magnetic field along the line of sight can be estimated from RM/DM. (where RM is rotation measure, DM is dispersion measure) For the estimation of magnetic field strength using RM/DM, the correlation between density and magnetic field is very important. When there is no correlation between density and magnetic field the relation gives exact mean magnetic field strength. But, if the correlation is positive, it overestimates the magnetic field strength, while if the correlation is negative, it underestimate the strength. We calculate correlation between density and magnetic field in compressible MHD turbulence.

  • PDF

Field Testing Methods on Early Shotcrete Strength for Tunnel Quality Control (터널의 품질관리를 위한 숏크리트 초기강도의 현장강도 시험기술)

  • Hong, Eui-Joon;Chang, Seok-Bue;Lee, Sung-Woo;Kim, Ki-Lim;Moon, Sang-Jo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.468-476
    • /
    • 2007
  • Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete as structural material is very important to the initial stabilization of the excavation face in tunnels. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. Through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were derived. Field tests in working tunnel were carried out in order to estimate the economic efficiency. As a result, pin penetration method was proved to be the most effective method for testing the early strength of the field shotcrete.

  • PDF

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

Estimate the Magnetic Field Strength using rotation measure

  • Yoon, Hee-Sun;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.107.2-107.2
    • /
    • 2011
  • Most astrophysical systems are turbulent and magnetized. Magnetic field plays an important role in the dynamics of astrophysical system and influence all of properties of astrophysical system. Therefore, information of magnetic field is very important to understand properties of astrophysical system. One way to obtain information of magnetic field is to use rotation measure. Mean strength of the magnetic field along the line of sight can be estimated from RM/DM, where RM is rotation measure and DM is dispersion measure. For the estimation of magnetic field strength using RM/DM, the correlation between density and magnetic field. When there is no correlation between density and magnetic field the relation gives exact mean magnetic strength. But if the positive correlation, it overestimates the magnetic field strength, while if the correlation is negative, it underestimate the magnetic field strength. In general, the ICM (intracluter medium) and the ISM (interstellar medium) cases, viscosity has a value greater than magnetic diffusion. We performed compressible MHD turbulence simulations and we studied correlation between density and magnetic field in different values of viscosity and magnetic diffusion. In most cases, we found weak or negative relations between the density and magnetic fields. We discuss implication of our results.

  • PDF

The distribution of magnetic field strength in Orion A region

  • Hwang, Jihye;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • Magnetic fields play an important role in supporting molecular clouds against gravitational collapse. The measured magnetic field strengths in molecular clods enable us to see the effect of magnetic fields in star-forming regions. People have used the Chandrasekhar and Fermi (CF) method to estimate magnetic field strength from observational quantities of molecular cloud density, turbulent velocity and polarization angle dispersion. However, previous studies obtained just one magnetic field strength over the quite large region of a molecular cloud by using the CF method. We here suggest a way to estimate magnetic field strength distribution in Orion A region. We used 450 and 850-micron polarization data of James Clerk Maxwell Telescope (JCMT). Magnetic field strengths were estimated in two wavelengths with 4 pixel resolutions of 16, 20, 24 and 28". Through statistical analysis, we proved the difference of magnetic field strengths between two wavelengths were caused by the difference of their beam sizes. Additionally, we calculated the radii of curvature of polarization segments to select a best pixel resolution for estimating the magnetic field distribution. The pixel resolution should be larger than a radius of curvature. We selected that 20 or 24" pixel resolutions are good choices towards Orion A region.

  • PDF

The Correlation between Mixture Distress and Strength of Bituminous Concretes

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.67-73
    • /
    • 1990
  • Many distress mechanisms in pavement are known to be caused by the poor mechanical properties of bituminous concretes. Among many mechanical properties, tensile strength is one of the more important indicates that represent the resistance of pavement to traffic loading. However, there has been no relationship established between the strength and distress mechanisms. Therefore, this study was conducted to evaluate a correlation between the tensile strength value and the intensity of distress in bituminous concrete. Distress data were collected from an extensive field investigation over 77km of a four-lane highway in South Carolina, USA, and from laboratory prepared specimens in two phases of study. Strength data were obtained from a total of more than 400 field cores taken from the same highway and from 640marshall specimens of surface course mixture prepared in the laboratory. These data were analyzed using statistical test techniques. It was found from statistical analyses that the tensile strength of bituminous concrete had a strong relation with the pavement condition in the field. In the analysis of rutting and stripping, low strength concrete showed a higher distress rate in the mixture, and mixtures under distress in the field showed obviously reduced strength values. Stripping was found to be the most significant distress mechanism that was correlated with low strength bituminous concrete. Rutting appeared more frequently in a low strength pavement section of the highway as a sign of failure due to traffic loading.

  • PDF

Effects of the Visual Analog Scale and Knee Function Index on the Muscle Strength and Muscle Endurance of the Knees of Male National Field-Hockey Athletes (국가대표 남자 필드하키 선수들의 무릎의 시각적 상사 척도와 무릎 기능평가가 무릎의 근력 및 근지구력에 미치는 영향)

  • Kim, Hyun-Chul;Park, Ki-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • PURPOSE: This study examined the effects of the Visual Analog Scale (VAS) and knee function index on the knee strength and endurance in the national male field-hockey athletes. METHODS: Twenty-four male field-hockey athletes with a painful knee who trained at the national training center in 2019 were enrolled. The VAS and knee function index questionnaire were used to evaluate the degree of pain and functional state of the knee. The muscle strength and endurance of the knee were measured by Biodex (System 4, USA). The Pearson product moment correlation was performed to examine the effects of the VAS and knee function index the of knee on the strength and endurance. In addition, the VAS and knee function index and muscle strength and muscle endurance were examined to determine the relationship using Simple Linear Regression. The statistical significance level was α=.05. RESULTS: An analysis of the correlation between VAS and knee function index and muscle strength and muscle endurance revealed the VAS and knee function index to be statistically significant (r = .700). In addition, the extensor muscle strength, knee VAS (r = -.457), and knee function index (r = -.414) were also statistically significant. A 1-point increase in the VAS and knee function index was associated with an approximately 9.881 and 1.006 extensor muscle strength. CONCLUSION: The VAS and knee function index of field-hockey athletes are related to the strength of the knee extensors. Therefore, field-hockey athletes should develop a program to strengthen the extensor muscle strength of the knee.

Geosynchronous Magnetic Field Response to Solar Wind Dynamic Pressure

  • Park, Jong-Sun;Kim, Khan-Hyuk;Lee, Dong-Hun;Lee, En-Sang;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The present study examines the morning-afternoon asymmetry of the geosynchronous magnetic field strength on the dayside (magnetic local time [MLT] = 06:00~18:00) using observations by the Geostationary Operational Environmental Satellites (GOES) over a period of 9 years from February 1998 to January 2007. During geomagnetically quiet time (Kp < 3), we observed that a peak of the magnetic field strength is skewed toward the earlier local times (11:07~11:37 MLT) with respect to local noon and that the geosynchronous field strength is larger in the morning sector than in the afternoon sector. That is, there is the morning-afternoon asymmetry of the geosynchronous magnetic field strength. Using solar wind data, it is confirmed that the morning-afternoon asymmetry is not associated with the aberration effect due to the orbital motion of the Earth about the Sun. We found that the peak location of the magnetic field strength is shifted toward the earlier local times as the ratio of the magnetic field strength at MLT = 18 (B-dusk) to the magnetic field strength at MLT = 06 (B-dawn) is decreasing. It is also found that the dawn-dusk magnetic field median ratio, B-dusk/B-dawn, is decreasing as the solar wind dynamic pressure is increasing. The morning-afternoon asymmetry of the magnetic field strength appears in Tsyganenko geomagnetic field model (TS-04 model) when the partial ring current is included in TS-04 model. Unlike our observations, however, TS-04 model shows that the peak location of the magnetic field strength is shifted toward local noon as the solar wind dynamic pressure grows in magnitude. This may be due to that the symmetric magnetic field associated with the magnetopause current, strongly affected by the solar wind dynamic pressure, increases. However, the partial ring current is not affected as much as the magnetopause current by the solar wind dynamic pressure in TS-04 model. Thus, our observations suggest that the contribution of the partial ring current at geosynchronous orbit is much larger than that expected from TS-04 model as the solar wind dynamic pressure increases.

EVOLUTION OF THE PRIMORDIAL MAGNETIC FIELD I. INITIAL MORPHOLOGY AND STRENGTH

  • Jung, Jae-Hun;Park, Chang-Bom
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.109-117
    • /
    • 1995
  • The morphology and strength of the primordial magnetic field which is generated spontaneously in the early universe are studied for three models: (1) inflation (2) primordial magnetized bubble and (3) primordial turbulence models, We calculate the power spectra of magnetic field that are scale-free and proportional to $k^{1.5},k^{3{\sim}4}$ and $k^{2/3}$, respectively. The configurations of magnetic field having these power spectra are visualized. To constrain the present strength of the primordial magnetic field we calculate the anisotropy of the microwave background radiation in Bianchi type I universe with globally homogeneous magnetic field. From the COBE limit of the quadrupole moment of $({\delta}T/T)_{l=2}$ the present strength of horizen-scale magnetic fields $B_p$ is constrained to be less than $9{\times}10^{-8}G$.

  • PDF

A Study on the Investigation of Application in Construction Field of Strength Prediction Model using Maturity Method (적산온도를 활용한 강도예측모델의 건설생산현장 적용성 검토에 관한 연구)

  • 주지현;장종호;김재환;길배수;남재현;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • If predicting of compressive strength of construction in construction field at early age is possibile, rational strength management & schedule plan is possible. With method for predicting strength of concrete, many researchers have been making study of maturity method. On the other hand, nowadays rationalization of construction capacity and reduction of a term of works due to improvement of construction capacity and application of a new method of construction is gathering strength with important issue. In accordance with this present condition, construction is being progressed in winter, but proper construction mothed and countermeasure for strength management is not established in case of winter construction. Therefore to investigate application in construction field at winter of strength prediction model that developed at former study, this study aim to measure application of developed strength prediction model through manufacture of mock-up concrete according to kind of strength level at 5$^{\circ}C$.

  • PDF