• Title/Summary/Keyword: Field smart agriculture

Search Result 112, Processing Time 0.023 seconds

A Study on Personal Information Protection System for Big Data Utilization in Industrial Sectors (산업 영역에서 빅데이터 개인정보 보호체계에 관한 연구)

  • Kim, Jin Soo;Choi, Bang Ho;Cho, Gi Hwan
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In the era of the 4th industrial revolution, the big data industry is gathering attention for new business models in the public and private sectors by utilizing various information collected through the internet and mobile. However, although the big data integration and analysis are performed with de-identification techniques, there is still a risk that personal privacy can be exposed. Recently, there are many studies to invent effective methods to maintain the value of data without disclosing personal information. In this paper, a personal information protection system is investigated to boost big data utilization in industrial sectors, such as healthcare and agriculture. The criteria for evaluating the de-identification adequacy of personal information and the protection scope of personal information should be differently applied for each industry. In the field of personal sensitive information-oriented healthcare sector, the minimum value of k-anonymity should be set to 5 or more, which is the average value of other industrial sectors. In agricultural sector, it suggests the inclusion of companion dogs or farmland information as sensitive information. Also, it is desirable to apply the demonstration steps to each region-specific industry.

Comparative Analysis of TTAK.KO-06.0288-Part3 and Development of an Open-source Communication Library for Greenhouse Control System

  • Kim, Joon Yong;Kim, Sangcheol;Lee, Jaesu
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Purpose: A modern greenhouse consists of various Information and Communications Technology (ICT) components e.g., sensor nodes, actuator nodes, gateways, controllers, and operating softwarethat communicate with each other. The interoperability between these components is an essential characteristic for any greenhouse control system. A greenhouse control system could not work unless the components communicate via common interfaces. The TTAK.KO-06.0288 is an interface standard consisting of four parts. Notably, TTAK.KO-06.0288-Part3, which describes the interface between a greenhouse operating system (GOS) and a greenhouse control gateway (GCG), is the core standard of TTAK.KO-06.0288. The objectives of this study were to analyze the TTAK.KO-06.0288-Part3 standard, to suggest alternative solutions for identified issues, and to develop a library as a proof of the alternative solutions. Methods: The "data field" was analyzed using a comparative analysis method, since it is a data transmission unit of TTAK.KO-06.0288-Part3. It was compared with other parts of TTAK.KO-06.0288 in terms of definition, format, size, and possible values. Although TTAK.KO-06.0288-Part1 and TTAK.KO-06.0288-Part2 do not use a "data field," they have a similar data structure. That structure was compared with the "data field" of TTAK.KO-06.0288-Part3. Results: Twenty-one issues were identified across four categories: inter-standard issues, intra-standard issues, operational issues, and misprint issues. Since some of the issues can raise interoperability problems, 16 alternative solutions were suggested. In order to prove the alternative solutions, an open-source communication library called libtp3 was developed. The library passed 14 unit tests and was adapted to two research. Conclusions: Although TTAK.KO-06.0288-Part3 is an interface standard for communication between a GOS and a GCG, it might not communicate between different implementations because of the identified issues in the standard. These issues could be solved by the alternative solutions, which could be used to revise TTAK.KO-06.0288. In addition, a relevant organization should develop a program for compatibility testing and should pursue test products for smart greenhouses.

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.

Designing an Agricultural Data Sharing Platform for Digital Agriculture Data Utilization and Service Delivery (디지털 농업 데이터 활용 및 서비스 제공을 위한 농산업 데이터 공유 플랫폼 설계)

  • Seung-Jae Kim;Meong-Hun Lee;Jin-Gwang Koh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This paper presents the design process of an agricultural data sharing platform intended to address major challenges faced by the domestic agricultural industry. The platform was designed with a user interface that prioritizes user requirements for ease of use and offers various analysis techniques to provide growth prediction for field environment, growth, management, and control data. Additionally, the platform supports File to DB and DB to DB linkage methods to ensure seamless linkage between the platform and farmhouses. The UI design process utilized HTML/CSS-based languages, JavaScript, and React to provide a comprehensive user experience from platform login to data upload, analysis, and detailed inquiry visualization. The study is expected to contribute to the development of Korean smart farm models and provide reliable data sets to agricultural industry sites and researchers.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.

Field Survey of Greenhouse for Strawberry Culture -Case Study Based on Western Gyeongnam Area- (딸기재배 온실의 현장조사 분석 -서부경남 지역을 중심으로-)

  • Jeong, Young Kyun;Lee, Jong Goo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2018
  • This study set out to select a system to realize an optimal environment for strawberry cultivation greenhouses based on data about the growth and development of strawberry and its environment and to provide basic data for the research of its improved productivity. For these purposes, the investigator conducted a field survey with greenhouses for strawberry cultivation in western Gyeongnam. The findings show that farmers in their fifties and sixties accounted for the biggest part in the age groups of strawberry farmers. While those who were under 50 were accounted for approximately 67.5%, those who were 60 or older accounted for 32.5%. As for cultivation experiences, the majority of the farmers had ten years of cultivation experiences or less with some having 30 years of cultivation experiences or more. All the farmers built an arch type single span greenhouse. Those who used nutrient solutions were about 75.0%, being more than those who used soil. All of the farmers that used a nutrient solution adopted an elevated hydroponic system. The single span greenhouses were in the range of 7.5~8.5m, 1.3~1.8m and 2.5~3.5m for width, eaves, and ridge height, respectively, regardless of survey areas. The rafters interval was about 0.7~0.8m. In elevated hydroponic cultivation, the width, height, and interval of the beds were about 0.25m, 1.2m and 1.0m, respectively. As for the strawberry varieties, the domestic ones accounted for approximately 97.5% with Seolhyang being the most favorite one at about 65.0%. As for the internal environment factors of greenhouses, 38 farmers measured only temperature and relatively humidity. As for hydroponics, the farmers used a hydroponics control system. Except for the farmers that introduced a smart farm system for temperature and humidity control, approximately 85.0% controlled temperature and humidity only with a control panel for side windows and ventilation fans. As for heating and heat insulation, all of the farmers were using water curtains with many farmers using an oil or electric boiler, radiating lamp or non-woven fabric, as well, when necessary.

Design of Hybrid Communication Structure for Video Transmission in Drone Systems (드론 영상 전송용 하이브리드 통신 구조의 설계)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.9-14
    • /
    • 2019
  • In modern society drones are actively utilized in the fields of security, defense, agriculture, communication and so on. Smart technology and artificial intelligence software have been developed with convergence, and the field of use is expected to expand further. On the point of the excellent performance of drones one of the essential technologies is the wireless communication that make the ground facility receive the video streaming obtained by the drones in the air. In the research the concept of communication region is proposed to cover the both the low altitude region for Wi-Fi communication and the high altitude region for LTE communication for the sake of video transmission. Also the hybrid communication structure is designed along the proposed concept and the proposed system is implemented as a communication system in the small size which can be mounted in a small size of drone. It is confirmed that the proposed system contains the effectiveness by showing the ability to successfully transmit HD video streaming in the range of 500 meters and the transfer time between two different communication systems is measured in 200msec by the experiments.

Analysis of Land Cover Change from Paddy to Upland for the Reservoir Irrigation Districts (토지피복지도를 이용한 저수지 수혜구역 농경지 면적 및 변화 추이 분석)

  • Kwon, Chaelyn;Park, Jinseok;Jang, Seongju;Shin, Hyungjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.27-37
    • /
    • 2021
  • Conversion of rice paddy field to upland has been accelerated as the central government incentivizes more profitable upland crop cultivation. The objective of this study was to investigate the current status and conversion trend from paddy to upland for the reservoir irrigation districts. Total 605 of reservoir irrigation districts whose beneficiary area is greater than 200 ha were selected for paddy-to-upland conversion analysis using the land cover maps provided by the EGIS of the Ministry of Environment. The land cover data of 2019 was used to analyze up-to-date upland conversion status and its correlation with city proximity, while land cover change between 2007 and 2019 was used for paddy-to-upland conversion trend analysis. Overall 14.8% of the entire study reservoir irrigation area was converted to upland cultivation including greenhouse and orchard areas. Approximately the portion of paddy area was reduced by 17.8% on average, while upland area was increased by 4.9% over the 12 years from 2007 to 2019. This conversion from paddy to upland cultivation was more pronounced in the Gyoenggi and Gyeongsang regions compared to other the Jeolla and Chungcheong provinces. The increase of upland area was also more notable in proximity of the major city. This study findings may assist to identify some hot reservoir districts of the rapid conversion to upland cultivation and thus plan to transition toward upland irrigation system.