• Title/Summary/Keyword: Field ring

Search Result 612, Processing Time 0.022 seconds

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.

Landscape Changes of the Mujechi Moor, Mt. Jungjok (정족산 무제치늪의 경관발달)

  • 유호상;공우석
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.101-109
    • /
    • 2001
  • The landscape changes at the Mujechi moors I and II during the last twenty two years were analysed using a tree ring analysis of pine trees, a distributional pattern of pine tree, an aerial photograph interpretation and a measurement of firebreak line. The analysis of aerial photographs(taken in 1978, 1988, 1998) indicates that the area of Mujechi moors I and II have gradually decreased. The decreased rate of moor area was relatively high, i.e.,-23.9 %(1978~1988) and -16.4 %(1998~1998) at the Mujechi moor I, but a little bit low, i.e., -2.6% (1978~1988) and -12.6 % (1998~1998) at the Mujechi moor II. However, dendrochronological analysis of pine trees at moors I and II shows that the appearance rates of pine trees per $100\textrm{m}^2$ at moor I and II were 0.28 and 0.57 respectively. And the number of younger pine trees(height is under 1.5m, DBH is less than 2.5 cm) invaded into moors are numbered eleven at the moor I, and ten at the moor II. This shows that the shift of a wetlands into a land was faster at the moor II than the moor I. The construction of a firebreak line and waterway along the moors I and II areas since the December, 1995, has diverted watershed flow and prohibited the runoff flow into the moors. The analysis of GIS suggests that the decreased watershed area were about $11,413.8\textrm{m}^2$(12.1 % of whole watershed area) at the moor I and $15,969.5\textrm{m}^2$(40.4 % of whole watershed area) at the moor II. The negative impact of firebreak line on the inflow of water into the moors I and II and destruction of vegetation along the firebreak line are noticeable from the field survey.

  • PDF