• Title/Summary/Keyword: Field plate

Search Result 1,547, Processing Time 0.031 seconds

Contour Integral Method for Crack Detection

  • Kim, Woo-Jae;Kim, No-Nyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.665-670
    • /
    • 2011
  • In this paper, a new approach to detect surface cracks from a noisy thermal image in the infrared thermography is presented using an holomorphic characteristic of temperature field in a thin plate under steady-state thermal condition. The holomorphic function for 2-D heat flow field in the plate was derived from Cauchy Riemann conditions to define a contour integral that varies according to the existence and strength of a singularity in the domain of integration. The contour integral at each point of thermal image eliminated the temperature variation due to heat conduction and suppressed the noise, so that its image emphasized and highlighted the singularity such as crack. This feature of holomorphic function was also investigated numerically using a simple thermal field in the thin plate satisfying the Laplace equation. The simulation results showed that the integral image selected and detected the crack embedded artificially in the plate very well in a noisy environment.

A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack (받음각을 갖는 평판보의 유동 여기진동에 관한 연구)

  • 이기백;손창민;김봉환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1919-1932
    • /
    • 1991
  • Experimental studies are conducted to investigate the Flow-Induced Vibration mechanism for cantilever plate model with the angle of attack (.alpha.=10.deg., 20.deg., 30.deg.). Research is divided into two parts. First, the flow fields around two dimensional flat plate model are investigated using LDV system. Second, the vortex shedding frequency and response spectra of cantilever plate are obtained experimentally using gap sensor and hot wire anemometer. Finite element method program was used in order to predict the flow field and pressure field around thin flat plate. And some predicted results were compared with the experimental data. The aspect ration of test model is d/t=25 (d; width, t; thickness). From the measurement of the flow field it was found that in the case of small inclined (.alpha.=10.deg., 20.deg.) relatively, the separated boundary layer at sharp leading edge developed smoothly downstream. With increasing the angle of attack of the plate, stagnation region was appeared on the back side of the plate and separated boundary layer was extended downstream. These trends are a good agreement with the computational results. It was found by analysis of response spectra of cantilever plate that the influences of vortex shedding frequency were important at the large of attack (.alpha.=30.deg.), and two peak values appear in entire test model at 24Hz, 150Hz.

Stress Histogram Analysis of Steel Plate Girder Railway Bridge due to Service Load Histories (실동하중에 의한 강판형철도교의 응력빈도해석)

  • Hwang, In-Gu;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.928-933
    • /
    • 2004
  • Despite the number of steel bridges being under in service more than 50 years reaches about 50$\%$ in present, the quantitative estimation in maintenance on steel railway bridges is not possible because a ton of the field data in the bridges have not been plentifully accumulated. Therefore, a series of field tests on the steel plate girder bridge, the typical types of steel railway bridges, are executed, and the stress characteristics of main members in steel plate girder railway bridges are quantitatively estimated in this study.

  • PDF

Reduction Characteristics of Electromagnetic Penetration through Narrow Slots in Conducting Screen

  • Park Eun-Jung;Kim Ki-Chai
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.130-134
    • /
    • 2006
  • This paper presents the reduction characteristics of penetrated electromagnetic fields through a narrow slot in a planar conducting screen of infinite extent. When a plane wave is excited to the narrow slot, the aperture electric field is controlled by the parallel wire or parallel plate connected on the slot. The magnitude of penetrated electromagnetic fields through a narrow slot is controlled by electric field distributions on the slot. An integral equation for the aperture electric field on narrow slots is derived and solved by applying Galerkin's method of moments. The results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel wire or parallel plate on the slot.

EDUCATION OF ELECTROMAGNETIC PENETRATION THROUGH NARROW SLOTS IN CONDUCTING SCREEN BY PARALLEL PLATE LOADING (평행평판 장하에 의한 슬릿 침투 전자파의 저감 특성)

  • Park, Eun-Jung;Ju, Chang-Hyun;Kim, Ki-Chai
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.66-68
    • /
    • 2005
  • This paper presents the reduction characteristics of penetrated electromagnetic fields through a narrow slot aperture in a planar conducting screen of infinite extent. When a plane wave is excited to the narrow slot, the aperture electric field is controlled by the parallel plate connected on the slot. The magnitude of penetrated electromagnetic fields through a narrow slot is controlled by electric field distributions on the slot aperture. An integral equation for the aperture electric field on narrow slots is derived and solved by applying Galerkin's method of moments. The results show that the magnitude of the penetrated electromagnetic field can be effectively reduced by installing the parallel plate on the slot aperture.

  • PDF

A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Slit In a Nearby Conducting Screen for Near-Field Scanning Microscopy

  • Lee, Jong-Ig;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • The problem of electromagnetic coupling between a slit fed by a flanged parallel-plate waveguide(PPW) and a slit in an infinite nearby conducting screen parallel to the flanged ground conductor is studied as a simplified problem for a near-field scanning microscopy(NSM). The method of moments isused to solve the coupled integral equations for the electric field distributions over the slits. The performance of the proposed apparatus as an NSM is tested by examining the effects of some geometrical parameters on the equivalent slit admittance and coupled powers through the slits.

Simulation of Electric Potential and Electric Field for Wire-Plate Type Plasma Reactor Manufacture (선 대 평판형 플라즈마 반응기 제작을 위한 전위 및 전계 해석)

  • Lee, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.167-171
    • /
    • 2003
  • Due to advancement of industrialization, the flue gas from the combustion of industrial factories and various means of transportation have polluted air. Therefore, it is necessary to develop new techniques of air purification. In order to produce a more effective reactor, simulation were conducted using the Flux-II D program. The condition of the simulation were as follows: The height of the plate electrode was 0 mm or 2 mm higher than that of the wire electrode. The distance between the electrodes was 12 mm, and the diameter of the wire electrode was 0.5 mm or 1.0 mm. The results of the electric potential and electric field simulations show that pollutants will be more effectively removed due to the dielectric strength between wire electrode and plate electrode which was strong, and wire electrodes which were concentrated in a high electric field.

Ultimate load behavior of horizontally curved composite plate girders

  • Shanmugam, N.E.;Basher, M.A.;Khalim, A.R.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.325-348
    • /
    • 2009
  • This paper is concerned with steel-concrete composite plate girders curved in plan. At the design stage these girders are assumed sometimes to act independent of the deck slabs resting on them in order to simplify the analysis. The advantage of composite action between the steel girders and concrete deck is not utilized. Finite element modeling of such composite action in plate girders is considered in this paper. Details of the finite element modeling and the non-linear analysis of the girders are presented along with the results obtained. Tension field action in the web panels similar to those observed in the straight plate girders is also noticed in these girders. Finite element and experimental results in respect of curved steel plate girders and straight composite plate girders tested by other researchers are presented first to assess the accuracy of the modeling. Effects of parameters such as curvature, steel flange width and web panel width that affect the behavior of composite girders are then considered in the analyses. An approximate method to predict the ultimate strength of horizontally curved composite plate girders is also presented.

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

Broadband Acoustic Power Radiation from a Finite Plate Excited by Random Forces in a Subsonic Flow Field

  • Lee, Hyo-Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.27-37
    • /
    • 2000
  • This paper presents a simplified analytical formulation for computing acoustic power radiation from a rectangular plate exposed to random forces such as turbulent boundary layer pressure fluctuations and arbitrary mechanical force in a subsonic flow field. The expression for the acoustic power is derived using modal expansion method and light fluid loading is assumed on the plate. In order to simplify the formulation for acoustic power due to combined excitations of mechanical forces and turbulent pressures, it is assumed that the structural damping of the plate is small and excitations are broadband random forces having frequency spectra above the convective coincidence. Under these assumptions, an approximate solution for the broadband acoustic power radiation from a plate excited by both turbulent pressures and arbitrary mechanical forces is obtained and evaluated considering the effect of modal coupling on the radiated acoustic power. An efficient method is also suggested to compute modal acoustic impedance in a moving fluid medium by using averaged Green function.

  • PDF