• Title/Summary/Keyword: Field observations

Search Result 1,094, Processing Time 0.032 seconds

Far ultraviolet observations of diffuse, monoenergetic, and broadband auroras

  • Lee, Jun-Chan;Min, Kyoung-Wook;Lee, Chi-Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.134.2-134.2
    • /
    • 2012
  • Discrete auroras, with unique shapes embedded in diffuse auroras, are generally associated with precipitating electrons that originate from the plasma sheet and are accelerated on the way as they travel to polar regions along the field lines. Two acceleration mechanisms have been proposed: quasi-static electric fields and dispersive Alfven waves, which are believed to yield monoenergetic peaks and broadband features in the particle spectra, respectively. Hence, it should be interesting to see how the two different mechanisms, through their characteristic spectra of the accelerated electrons, produce distinct auroral images and spectra, especially in the far ultraviolet (FUV) wavelengths as the long and short Lyman-Birge-Hopfield (LBH) bands exist as well as the strong absorption band of molecular oxygen in the FUV band. In fact, we have previously shown, using the simultaneous observations of precipitating electrons and the corresponding FUV spectra, that the discrete auroras associated with inverted-V events have a stronger relative intensity of the long LBH to the short LBH compared to diffuse auroras, especially when the peak energy is above a few keV. In this paper, we would like to focus on the differences in the FUV images and spectra between the two discrete auroras of the monoenergetic and broadband cases, again based on the study using the dataset of simultaneous observations of particles and FUV spectral images.

  • PDF

The Infrared Medium-deep Survey. VII. Optimal selection for faint quasars at z ~ 5 and preliminary results

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2019
  • The universe has been ionized in the post-reionization by several photon contributors. The dominant source to produce the hydrogen ionizing photons is not revealed so far. Faint quasars have been expected to generate UV photon budgets required to maintain ionization state of universe. Observational limits, however, hinder to discover them despite their higher number density than bright one. Consequently, the influence of faint quasars on post-reionization are not considered sufficiently. Therefore, a survey to find faint quasars at z ~ 5 is crucial to determine the main ionizing source in the post-reionization era. Deep images from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) allow us to search for quasar swith low luminosities in the ELAIS-N1 field. J band information are obtained by the Infrared Medium-deep Survey (IMS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep ExtragalacticSurvey (DXS). Faint quasar candidates were selected from several multi-band color cut criteria based on simulated quasars on color-color diagram. To choose the reliable candidates with possible Lyman break, we have performed medium-bands observations. Whether a candidate is a quasar or a dwarf star contamination was decided by results from chi-square minimization of quasar/dwarf model fitting. Spectroscopic follow-up observations confirm three quasars at z ~ 5. 100% spectral confirmation success rate implies that the medium-band observations effectively select faint quasars with strong Lyman alpha emission.

  • PDF

Recovery of Asteroids from Observations of Too-Short Arcs by Triangulating Their Admissible Regions

  • Espitia, Daniela;Quintero, Edwin A.;Parra, Miguel A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.119-134
    • /
    • 2021
  • The data set collected during the night of the discovery of a minor body constitutes a too-short arc (TSA), resulting in failure of the differential correction procedure. This makes it necessary to recover the object during subsequent nights to gather more observations that will allow a preliminary orbit to be calculated. In this work, we present a recovery technique based on sampling the admissible region (AdRe) by the constrained Delaunay triangulation. We construct the AdRe in its topocentric and geocentric variants, using logarithmic and exponential metrics, for the following near-Earth-asteroids: (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5; and the main-belt asteroids: (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) Apisaon. Using our sampling technique, we established the ephemeris region for these objects, using intervals of observation from 25 minutes up to 2 hours, with propagation times from 1 up to 47 days. All these objects were recoverable in a field of vision of 95' × 72', except for (3122) Florence and (3200) Phaethon, since they were observed during their closest approach to the Earth. In the case of 2006 SO375, we performed an additional test with only two observations separated by 2 minutes, achieving a recovery of up to 28 days after its discovery, which demonstrates the potential of our technique.

PHYSICAL CONDITIONS IN DARK INTERSTELLAR CLOUDS: MAGNETIC FIELD STRENGTH AND DENSITY

  • Hong, S.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 1981
  • In order to know how the magnetic field increases with density in interstellar clouds, we have analyzed observations of extinction and polarization for stars in the ${\rho}$ Oph molecular cloud complex. The size of grains in dense parts of the complex is estimated to be larger than the ones in diffuse interstellar clouds by about 15 percent in radii. Employing the Davis-Greenstein mechanism for grain alignment with this estimated grain size, we have put constraints on the exponent in the field-density relation $B{\propto}n^x:1/5{\leq}x{\leq}1/3$. It is concluded that magnetic field in gravitationally contracting clouds increases less steeply than the classical expectation based on the approximation of isotropic contraction with complete frozen-in flux.

  • PDF

Including Thermal Effects in CFD Wind Flow Simulations

  • Meissner, Catherine;Gravdahl, Arne Reidar;Steensen, Birthe
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.833-839
    • /
    • 2009
  • The calculation of the wind field for resource assessment is done by using CFD Reynolds-Averaged Navier-Stokes simulations performed with the commercial software WindSim. A new interface has been created to use mesoscale simulation data from a meteorological model as driving data for the simulations. This method makes it necessary to take into account thermal effects on the wind field to exploit the full potential of this method. The procedure for considering thermal effects in CFD wind field simulations as well as the impact of thermal effects on the wind field simulations is presented. Simulations for non-neutral atmospheric conditions with the developed method are consistent with expected behavior and show an improvement of simulation results compared with observations.

MAGNETIC FLUX-CURRENT SURFACES OF MAGNETOHYDROSTATIC EQUILIBRIA

  • Choe, G.S.;Jang, Minhwan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.261-268
    • /
    • 2013
  • Magnetohydrostatic equilibria, in which the Lorentz force, the plasma pressure force and the gravitational force balance out to zero, are widely adopted as the zeroth order states of many astrophysical plasma structures. A magnetic flux-current surface is a surface, in which both magnetic field lines and current lines lie. We for the first time derive the necessary and sufficient condition for existence of magnetic flux-current surfaces in magnetohydrostatic equilibria. It is also shown that the existence of flux-current surfaces is a necessary (but not sufficient) condition for the ratio of gravity-aligned components of current density and magnetic field to be constant along each field line. However, its necessary and sufficient condition is found to be very restrictive. This finding gives a significant constraint in modeling solar coronal magnetic fields as force-free fields using photospheric magnetic field observations.

DEVELOPMENT OF WIDE-FIELD IMAGING CAMERA FOR ZODIACAL LIGHT OBSERVATION

  • KWON S. M.;HONG S. S.;SHIN K. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.179-184
    • /
    • 2004
  • We have developed a wide-field imaging camera system, called WICZO, to monitor light of the night sky over extended period. Such monitoring is necessary for studying the morphology of interplanetary dust cloud and also the time and spatial variations of airglow emission. The system consists of an electric cooler a CCD camera with $60\%$ quantum efficiency at 500nm, and a fish-eye lens with $180^{\circ}$ field of view. Wide field imaging is highly desired in light of the night sky observations in general, because the zodiacal light and the airglow emission extend over the entire sky. This paper illustrates the design of WICZO, reports the result of its laboratory performance test, and presents the first night sky image, which was taken, under collaboration with Byulmaro Observatory, on top of Mt. Bongrae at Yongweol in January, 2004.

Generation of global coronal field extrapolation from frontside and AI-generated farside magnetograms

  • Jeong, Hyunjin;Moon, Yong-Jae;Park, Eunsu;Lee, Harim;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • Global map of solar surface magnetic field, such as the synoptic map or daily synchronic frame, does not tell us real-time information about the far side of the Sun. A deep-learning technique based on Conditional Generative Adversarial Network (cGAN) is used to generate farside magnetograms from EUVI $304{\AA}$ of STEREO spacecrafts by training SDO spacecraft's data pairs of HMI and AIA $304{\AA}$. Farside(or backside) data of daily synchronic frames are replaced by the Ai-generated magnetograms. The new type of data is used to calculate the Potential Field Source Surface (PFSS) model. We compare the results of the global field with observations as well as those of the conventional method. We will discuss advantage and disadvantage of the new method and future works.

  • PDF

Perceptions and Practices of Teachers in an Earth Science Teachers' Research Group About Teaching Geologic Field Trip: A Case Study (지구과학 교사 연구 모임 참여 교사의 야외 지질 학습 지도에 대한 인식과 실행에 대한 사례 연구)

  • Jun, Young-Ho;Kwon, Hong-Jin;Choi, Byeon-Gak;Park, Jeong-Woong;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.686-698
    • /
    • 2007
  • The purpose of this study was to investigate the perceptions and practices of secondary science teachers who participated in an Earth science teachers' research roup about teaching geologic field trips. Four Earth science teachers participated in this study. Data included field trip observations, semi-structured interviews with teachers and students, and analysis of instructional materials and students' reports from the field trip. Field trip observations and interviews were video- and audio-taped and transcribed. Results indicated that teacher participants focused more on aesthetic objectives for geologic field trip. The participants' instruction tended to show rather teacher-centered explanation due to limited time at each field site though various teaching strategies were used at times to engage students in a scientific inquiry. This group of teachers strived to develop their professional ability to guide geologic field trip by working with a small study group with colleagues, participating geologic field trips, and enrolling graduate programs.

Diffusion in Coastal Waters of the Yellow Sea (황해연안해성의 물질확산에 관하여)

  • 이종섭;김차겸;장선덕;김종학
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.261-270
    • /
    • 1992
  • To investigate the flow patterns and diffusions in the Taean coastal waters of the eastern Yellow Sea, hydraulic and numerical experiments of tidal currents and diffusions of dye and cooling water were performed during spring tide along with field observations. Flow patterns obtained by the hydraulic and numerical experiments approximately coincide with those of the field observations. In the fold observations of tidal current, currents flow southwestward during the ebb tide, while currents flow northeastward during the flood tide. and the maximum velocity is 2.13 ㎧ toward WSW direction. The Eulerian diffusion coefficient estimated from field measmements of current is 7.82$\times$10$^{5}$ $\textrm{cm}^2$/s. Diffusion coefficients obtained from the area of dye plume in the model are given by the expression 0.18 $r^{4}$3/, and the coefficients have the range of 10$^{5}$ ~10$^{6}$ $\textrm{cm}^2$/s. These values are similar to the Eulerian diffusion coefficient estimated fram field measurements. Diffusion coefficients obtained in the hydraulic model are one to two orders higher than those obtained in the Onsan Bay in the eastern waters and two to three orders higher than those obtained in the Chinhae Bay in the southern waters of the Korean Peninsula. Diffusion patterns of cooling water by numerical experiments are similar to those of dye plume by hydraulic experiments. Both hydraulic and numerical experiment results of diffusions of dye plume and cooling water in the Taean coastal waters, have shown that the diffusion during the ebb tide is more prevalent than one during the flood tide.

  • PDF