Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
Journal of radiological science and technology
/
v.35
no.2
/
pp.157-164
/
2012
The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.
Purpose : This study was performed to measure dose alteration at the air-tissue interface resulting from rebuild-up to the loss of charged particle equilibrium in the tissues around the air-tissue interfaces. Materials and Methods : The 6 and 10-MV photon beam in dual energy linear accelerator were used to measure the surface dose at the air-tissue interface The polystyrene phantom sized $25{\times}25{\times}5\;cm^3$ and a water phantom sized $29{\times}29{\times}48\;cm^3$ which incorporates a parallel-plate ionization chamber in the distal side of air gap were used in this study. The treatment field sizes were $5{\times}5\;cm^2,\;10{\times}10\;cm^2\;and\;20{\times}20\;cm^2$. Air cavity thickness was variable from 10 mm to 50 mm. The observed-expected ratio (OER) was defined as the ratio of dose measured at the distal junction that is air-tissue interface to the dose measured at the same point in a homogeneous phantom. Results : In this experiment, the result of OER was close or slightly over than 1.0 for the large field size but much less (about 0.565) than 1.0 for the small field size in both photon energy. The factors to affect the dose distribution at the air-tissue interface were the field size, the thickness of air cavity. and the photon energy. Conclusion : Thus, the radiation oncologist should take into account dose reduction at the air-tissue interface when planning the head and neck cancer especially pharynx and laryngeal lesions, because the dose can be less nearly $29{\%}$ than predicted value.
Lee, Joo Hyuk;Koh, Kyoung Hwan;Ha, Sung Whan;Han, Man Chung
Radiation Oncology Journal
/
v.1
no.1
/
pp.55-60
/
1983
To evaluate the usefulness of computed tomography (CT) in radiotherapy treatment planning in malignant tumors of thoracic cage, the computer generated dose distributions were compared between plans based on conventional studies and those based on CT scan. 22 cases of thoracic malignancies, 15 lung cancers and 7 esophageal cancers, diagnosed and treated in Department of Therapeutic Radiology of Seoul National University Hospital from September, 1982 to April, 1983, were analyzed. In lung cancers, dose distribution in plans using AP, PA parallel opposing ports with posterior spinal cord block and in plans using box technique both based on conventional studies were compared with dose distribution using AP, PA and two oblique ports based on CT scan. In esophageal cancers, dose distribution in plans based on conventional studies and those based on CT scans, both using 3 port technique were compared. The results are as follows: 1. Parallel opposing field technique were inadequate in all cases of lung cancers, as portion of primary tumor in 13 of 15 cases and portion of mediastinum in all were out of high dose volume. 2. Box technique was inadequate in 5 of 15 lung cancers as portion of primary tumor was not covered and in every case the irradiated normal lung volume was quite large. 3. Plans based on CT scan were superior to those based on conventional studies as tumor was demarcated better with CT and so complete coverage of tumor and preservation of more normal lung volume could be made. 4. In 1 case of lung cancer, tumor localization was nearly impossible with conventional studies, but after CT scan tumor was more clearly defined and localized. 5. In 1 of 7 esophageal cancers, the radiation volume should be increased for marginal coverage after CT scan. 6. Depth dose correction for tissue inhomogeneity is possible with CT, and exact tumor dose can be calculated. As a result radiotherapy treatment planning based on CT scan has a pteat advantage over that based on conventional studies.
The Journal of Korean Society for Radiation Therapy
/
v.18
no.2
/
pp.89-96
/
2006
Purpose: To study effectiveness of heterogeneity correction of internal-body inhomogeneities and patient positioning immobilizers in dose calculation, using images obtained from CT-Simulator. Materials and Methods: A water phantom($250{\times}250{\times}250mm^3$) was fabricated and, to simulate various inhomogeneity, 1) bone 2) metal 3) contrast media 4) immobilization devices(Head holder/pillow/Vac-lok) were inserted in it. And then, CT scans were peformed. The CT-images were input to Radiation Treatment Planning System(RTPS) and the MUs, to give 100 cGy at 10 cm depth with isocentric standard setup(Field Size=$10{\times}10cm^2$, SAD=100 cm), were calculated for various energies(4, 6, 10 MV X-ray). The calculated MUs based on various CT-images of inhomogeneities were compared and analyzed. Results: Heterogeneity correction factors were compared for different materials. The correction factors were $2.7{\sim}5.3%$ for bone, $2.7{\sim}3.8%$ for metal materials, $0.9{\sim}2.3%$ for contrast media, $0.9{\sim}2.3%$ for Head-holder, $3.5{\sim}6.9%$ for Head holder+pillow, and $0.9{\sim}1.5%$ for Vac-lok. Conclusion: It is revealed that the heterogeneity correction factor calculated from internal-body inhomogeneities have various values and have no consistency. and with increasing number of beam ports, the differences can be reduced to under 1%, so, it can be disregarded. On the other hand, heterogeneity correction from immobilizers must be regarded enough to minimize inaccuracy of dose calculation.
An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.
In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.
Park, Hyo-Kuk;Lee, Sang-Kyu;Yoon, Jong-Won;Cho, Jeong-Hee;Kim, Dong-Wook;Kim, Joo-Ho
The Journal of Korean Society for Radiation Therapy
/
v.18
no.2
/
pp.105-112
/
2006
Purpose: To demonstrate that water bolus in the patient surface can decrease the dose inhomogeneity by patient surface large tissue defect when the surface is in an electron-beam field. And We tried to find a easy way to water control. Methods and Materials: To demonstrate the use of water bolus in the irregular surface clinically, the case of a patient with myxofibrosarcoma of the chest wall who was treated with electrons. We obtained dose distribution using missing tissue option of PINACLE 6.2b (ADAC, USA). We fabricate a Mev-green for water bolus in patient with defect of tissue. Then put the water bolus which is vinyl packed water into the designed Mev-green. We peformed CT scan with CT-simulator. Three-dimensional (3D) dose distributions with and without water bolus in the large irregular chest wall were calculated for a representative patient. Resulting dose distributions and dose-volume histograms of water bolus were compared with missing tissue option and non bolus plans. We fabricate a new water control device. Results: Controlled Water bolus markedly decrease the dose heterogeneity, and minimizes normal tissue exposure caused by the surface irregularities of the chest wall mass. In the test case, The non bolus plan has a maximum target dose of 132%. After applying water bolus, the maximum target dose has been reduced substantially to 110.4%. The maximum target dose was reduced by 21.6% using this technique. Conclusion: The results showed that controlled water bolus could significantly improve the dose homogeneity in the PTV for patients treated with electron therapy using water control device. This technique may reduce the incidence of normal organ complications that occur after electron-beam therapy in irregular surface. And our new device shows handiness of water control.
Purpose of this study is to compare the signal intensity (SI) and CNR with T1 weighted image using FLASH at 3T abdominal MRI by varying flip angle (FA). Totally 20 patients (male : 12, female : 8, Age : $28{\sim}63$ years with mean : 51) were examined by 3 Tesla MR scanner (Magnetom Tim Trio, SIEMENS, Germany) with 8 channel body array coil between september and October 2008. Imaging parameters were as follows : FLASH sequence, TR : 120 ms, TE : minimum, FOV (field of view) : $360{\times}300\;mm$, Matrix : $256{\times}224$, slice : 6 mm, scan time : 15 sec and Breath-hold technique. Abdominal image, with a 50 ml syringe filled with water placed in the FOV measuring the water signal, were acquired with varying FA through $10^{\circ}$ to $90^{\circ}$ with $10^{\circ}$ interval. SI's were measured three times at liver parenchyme, water, spleen and background and averaged. The CNR's were measured between the ROIs (region of interest). Statistic analysis was performed with ANOVA test using SPSS software (version 17.0). Less than FA $30^{\circ}$, abdominal images were severely inhomogeneity. Especially, T1 effect of water signal was weak. As the flip angle increased, the signal intensity decreased at all the regions. Especially, flip angle of the highest signal intensity was observed with $40^{\circ}$ at the liver parenchyme, $20^{\circ}$ at water, $30^{\circ}$ at the spleen, respectively. The CNR between liver and water was -60.92 at FA $10^{\circ}$ and 15.16 at FA $80^{\circ}$. The CNR between liver and spleen was -3.18 at FA $10^{\circ}$ and 9.65 at $80^{\circ}$. In conclusion, FA $80^{\circ}$ is optimal for T1 weighted effect using FLASH pulse sequence at 3.0 T abdominal MRI.
The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.