• Title/Summary/Keyword: Field information

Search Result 14,816, Processing Time 0.056 seconds

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.

A Study on Risk Parity Asset Allocation Model with XGBoos (XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구)

  • Kim, Younghoon;Choi, HeungSik;Kim, SunWoong
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2020
  • Artificial intelligences are changing world. Financial market is also not an exception. Robo-Advisor is actively being developed, making up the weakness of traditional asset allocation methods and replacing the parts that are difficult for the traditional methods. It makes automated investment decisions with artificial intelligence algorithms and is used with various asset allocation models such as mean-variance model, Black-Litterman model and risk parity model. Risk parity model is a typical risk-based asset allocation model which is focused on the volatility of assets. It avoids investment risk structurally. So it has stability in the management of large size fund and it has been widely used in financial field. XGBoost model is a parallel tree-boosting method. It is an optimized gradient boosting model designed to be highly efficient and flexible. It not only makes billions of examples in limited memory environments but is also very fast to learn compared to traditional boosting methods. It is frequently used in various fields of data analysis and has a lot of advantages. So in this study, we propose a new asset allocation model that combines risk parity model and XGBoost machine learning model. This model uses XGBoost to predict the risk of assets and applies the predictive risk to the process of covariance estimation. There are estimated errors between the estimation period and the actual investment period because the optimized asset allocation model estimates the proportion of investments based on historical data. these estimated errors adversely affect the optimized portfolio performance. This study aims to improve the stability and portfolio performance of the model by predicting the volatility of the next investment period and reducing estimated errors of optimized asset allocation model. As a result, it narrows the gap between theory and practice and proposes a more advanced asset allocation model. In this study, we used the Korean stock market price data for a total of 17 years from 2003 to 2019 for the empirical test of the suggested model. The data sets are specifically composed of energy, finance, IT, industrial, material, telecommunication, utility, consumer, health care and staple sectors. We accumulated the value of prediction using moving-window method by 1,000 in-sample and 20 out-of-sample, so we produced a total of 154 rebalancing back-testing results. We analyzed portfolio performance in terms of cumulative rate of return and got a lot of sample data because of long period results. Comparing with traditional risk parity model, this experiment recorded improvements in both cumulative yield and reduction of estimated errors. The total cumulative return is 45.748%, about 5% higher than that of risk parity model and also the estimated errors are reduced in 9 out of 10 industry sectors. The reduction of estimated errors increases stability of the model and makes it easy to apply in practical investment. The results of the experiment showed improvement of portfolio performance by reducing the estimated errors of the optimized asset allocation model. Many financial models and asset allocation models are limited in practical investment because of the most fundamental question of whether the past characteristics of assets will continue into the future in the changing financial market. However, this study not only takes advantage of traditional asset allocation models, but also supplements the limitations of traditional methods and increases stability by predicting the risks of assets with the latest algorithm. There are various studies on parametric estimation methods to reduce the estimated errors in the portfolio optimization. We also suggested a new method to reduce estimated errors in optimized asset allocation model using machine learning. So this study is meaningful in that it proposes an advanced artificial intelligence asset allocation model for the fast-developing financial markets.

Professional Speciality of Communication Administration and, Occupational Group and Series Classes of Position in National Public Official Law -for Efficiency of Telecommunication Management- (통신행정의 전문성과 공무원법상 직군렬 - 전기통신의 관리들 중심으로-)

  • 조정현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.3 no.1
    • /
    • pp.26-27
    • /
    • 1978
  • It can be expected that intelligence and knowledge will be the core of the post-industrial society in a near future. Accordingly, the age of intelligence shall be accelerated extensively to find ourselves in an age of 'Communication' service enterprise. The communication actions will increase its efficiency and multiply its utility, indebted to its scientic principles and legal idea. The two basic elements of communication action, that is, communication station and communication men are considered to perform their function when they are properly supported and managed by the government administration. Since the communication action itself is composed of various factors, the elements such as communication stations and officials must be cultivated and managed by specialist or experts with continuous and extensive study practices concerned. With the above mind, this study reviewed our public service officials law with a view to improve it by providing some suggestions for communication experts and researchers to find suitable positions in the framework of government administration. In this study, I would like to suggest 'Occupational Group of Communication' that is consisted of a series of comm, management positions and research positions in parallel to the existing series of comm, technical position. The communication specialist or expert is required to be qualified with necessary scientific knowledge and techniques of communication, as well as prerequisites as government service officials. Communication experts must succeed in the first hand to obtain government licence concerned in with the government law and regulation, and international custom before they can be appointed to the official positions. This system of licence-prior-to-appointment is principally applied in the communication management position. And communication research positions are for those who shall engage themselves to the work of study and research in the field of both management and technical nature. It is hopefully expected that efficient and extensive management of communication activities, as well as scientific and continuous study over than communication enterprise will be upgraded at national dimensions.

  • PDF

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

A Study on the Strategy for Enhancing the Service Export linked with Manufacturing Sector : focused on Stage System and Special Lighting Service (제조-서비스 연계형 수출상품화 모델 개발전략 - 무대장치 및 특수조명서비스 수출산업을 중심으로 -)

  • Park, Moon-Suh
    • International Commerce and Information Review
    • /
    • v.10 no.4
    • /
    • pp.457-491
    • /
    • 2008
  • As stage equipment export markets along with special lighting service lack the attraction for already globally established businesses, such markets can be viewed as an advantageous opportunity for SMEs as in general. In reality, global businesses tend to focus on large construction projects and this indicates relatively less substantial markets such as stage equipment and special lighting service export are more suitable for SME businesses. However, possible problems may be recognized as following; doubtful capabilities by such businesses to join in the vast and competitive global market and pursue manufacturing and service based export. This point is also supported by the fact that such in general SME businesses have substantially less experience in exporting products and services abroad. Realizing the distinctive features of the Korean economy, it is unarguable that every sector and area of global market must be regarded and monitored closely. Hence, it can be argued that there is an imminent need for establishment of supportive institution to assist export process of combination of stage equipments and special lighting service. This study emphasizes the need to improve export process of stage equipments, special lighting services as well as other related products and services which have been focused in domestic market only until now. Further, it also analyzed the potential prospect of such direction reconciling current crisis our manufacturing industry is facing. Even though it maybe regarded as one of the niche market for export of Korea in the short term view, stage equipment and special lighting service industry may rapidly grow as the global cultural industries have grown along with the increase of national income earnings overall. Due to such advantageous features, it can be expected that such industries will show strong growth in the near future. After analyzing the fact that Korea's plants (eg. powerplants) export sector is at its boom, there is a need to transform stage equipment and special lighting service export market into a primary market from a secondary(niche) market for SMEs. This study is viewed from the Korean economic and export sector aspect in the aim of seeking a solution to conquest our realistic limit in our export sector by developing a suitable export model. There have been cases of very few attempts to expand abroad by SMEs who have failed miserably due to their failure to adapt to foreign culture, practice and languages as well as substantial lack in experience in export marketing. Despite this, neglecting our manufacturing industry as it is which is showing its limit and problems is out of option therefore, it is imminent that we come up with an effective measure to address this problem and service export can be suggested as one of them. This study reveals manufacturing-service export model of stage equipment and special lighting service and its related areas is recognized as a field with a very strong future and furthermore, it is expected to bring synergy effects in manufacturing and services sector as well. Further, the operation strategy contains combination, composition and fusion(convergence) of manufacturing and service sectors which could derive various of export products which displays greater success probability or this export model. The outcome of this research is expected to become a useful source for enterprises related to such industry which are seeking a possible global expansion. Furthermore, it is also expected to become a catalyst which fastens the process of global expansion and not only that, we are firmly assured that this study will become an opportunity to improve our current policies and institutions related to this area's export market.

  • PDF

Corporate Governance and Managerial Performance in Public Enterprises: Focusing on CEOs and Internal Auditors (공기업의 지배구조와 경영성과: CEO와 내부감사인을 중심으로)

  • Yu, Seung-Won
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.71-103
    • /
    • 2009
  • Considering the expenditure size of public institutions centering on public enterprises, about 28% of Korea's GDP in 2007, public institutions have significant influence on the Korean economy. However, still in the new government, there are voices of criticism about the need of constant reform on public enterprises due to their irresponsible management impeding national competitiveness. Especially, political controversy over appointment of executives such as CEOs of public enterprises has caused the distrust of the people. As one of various reform measures for public enterprises, this study analyzes the effect of internal governance structure of public enterprises on their managerial performance, since, regardless of privatization of public enterprises, improving the governance structure of public enterprises is a matter of great importance. There are only a few prior researches focusing on the governance structure and managerial performance of public enterprises compared to those of private enterprises. Most of prior researches studied the relationship between parachuting employment of CEO and managerial performance, and concluded that parachuting produces negative effect on managerial performance. However, different from the results of such researches, recent studies suggest that there is no relationship between employment type of CEOs and managerial performance in public enterprises. This study is distinguished from prior researches in view of following. First, prior researches focused on the relationship between employment type of public enterprises' CEOs and managerial performance. However, in addition to this, this study analyzes the relationship of internal auditors and managerial performance. Second, unlike prior researches studying the relationship between employment type of public corporations' CEOs and managerial performance with an emphasis on parachuting employment, this study researches impact of employment type as well as expertise of CEOs and internal auditors on managerial performance. Third, prior researchers mainly used non-financial indicators from various samples. However, this study eliminated subjectivity of researchers by analyzing public enterprises designated by the government and their financial statements, which were externally audited and inspected. In this study, regression analysis is applied in analyzing the relationship of independence and expertise of public enterprises' CEOs and internal auditors and managerial performance in the same year. Financial information from 2003 to 2007 of 24 public enterprises, which are designated by the government, and their personnel information from the board of directors are used as samples. Independence of CEOs is identified by dividing CEOs into persons from the same public enterprise and persons from other organization, and independence of internal auditors is determined by classifying them into two groups, people from academic field, economic world, and civic groups, and people from political community, government ministries, and military. Also, expertise of CEOs and internal auditors is divided into business expertise and financial expertise. As control variables, this study applied foundation year, asset size, government subsidies as a proportion to corporate earnings, and dummy variables by year. Analysis showed that there is significantly positive relationship between independence and financial expertise of internal auditors and managerial performance. In addition, although business expertise and financial expertise of CEOs were not statistically significant, they have positive relationship with managerial performance. However, unlike a general idea, independence of CEOs is not statistically significant, but it is negatively related to managerial performance. Contrary to general concerns, it seems that the impact of independence of public enterprises' CEOs on managerial performance has slightly decreased. Instead, it explains that expertise of public enterprises' CEOs and internal auditors plays more important role in managerial performance rather than their independence. Meanwhile, there are limitations in this study as follows. First, in contrast to private enterprises, public enterprises simultaneously pursue publicness and entrepreneurship. However, this study focuses on entrepreneurship, excluding considerations on publicness of public enterprises. Second, public enterprises in this study are limited to those in the central government. Accordingly, it should be carefully considered when the result of this study is applied to public enterprises in local governments. Finally, this study excludes factors related to transparency and democracy issues which are raised in appointment process of executives of public enterprises, as it may cause the issue of subjectivity of researchers.

  • PDF

Different Perceptions, Knowledge, and Attitudes of Elementary, Middle, and High School Students regarding Irradiated Food, Nuclear Power Generation, and Medical Radiation (초, 중, 고등학생의 방사선조사식품, 원자력발전, 의료방사선에 대한 인식, 지식, 태도 차이)

  • Han, Eun Ok;Kim, Jae Rok;Choi, Yoon Seok
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • A survey was conducted on perceptions, knowledge, and attitudes of elementary, middle, and high school students, who will lead public opinion in the future, regarding irradiated food, nuclear power generation, and medical radiation. These topics urgently require general social acceptability among various fields in which radiation is used. Educational methods to enhance social acceptability were partially discovered. First, it is necessary to implement different strategies when designing courses for female and male students. Male students have higher levels of objective knowledge (p<0.039) of irradiated food, necessity (p<0.001) and objective knowledge (p<0.001) of nuclear power generation, approval of building a nuclear power plant in the nation (p<0.001), necessity (p<0.001) and objective knowledge (p<0.001) of medical radiation, and attitudes regarding using medical radiation (p<0.007, p<0.001). Second, the educational effect of explanations to help increase national understanding of the necessity and safety of nuclear power generation will increase if information on the necessity and safety of medical radiation is provided as well. Both male and female students perceived that medical radiation is the most necessary (p<0.001), medical radiation is the safest (p<0.001), and nuclear power generation is the least safe (p<0.013). Moreover, the correlation between medical radiation and nuclear power generation was the highest. Third, there is a need for different lectures between classes, since the patterns of perception vary according to the field of radiation use among elementary, middle, and high school students. Elementary school students had high interest in education on nuclear power generation (p<0.005), perceived that irradiated food is safe (p<0.001), and had the most positive attitude toward consuming irradiated food (p<0.001). Middle school students had high interest in education on nuclear power generation (p<0.018), perceived that nuclear power generation (p<0.001) and medical radiation (p<0.002) are safe, and had the most positive attitude toward using radiation for treatment (p<0.001). High school students had the highest level of objective knowledge on nuclear power generation (p<0.001) and medical radiation (p<0.001), and perceived that medical radiation is the most necessary (p<0.017); however, they perceived that nuclear power generation is the least safe (p<0.001). Attitudes toward irradiated food intake (p<0.001) and approving construction of a nuclear power plant in their neighborhood (p<0.001) were both low. Fourth, it is necessary to provide educational programs to change perceptions and improve attitudes rather than providing education focused on objective knowledge. There was no correlation between objective knowledge and necessity of irradiated food, objective knowledge and safety and interest in education on nuclear power generation, and objective knowledge and interest in education and information acquirement regarding medical radiation. In particular, high school students had the highest level of objective knowledge and yet had the least positive attitudes toward approving construction of nuclear power plants in their neighborhood and intake of irradiated food. Therefore, to increase the social acceptability of using nuclear energy and radiation in Korea, it is desirable to provide strategic educational programs to improve perceptions, knowledge, and attitudes regarding the necessity and safety of their use.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

A Study on the Archives and Records Management in Korea - Overview and Future Direction - (한국의 기록관리 현황 및 발전방향에 관한 연구)

  • Han, Sang-Wan;Kim, Sung-Soo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.2 no.2
    • /
    • pp.1-38
    • /
    • 2002
  • This study examines the status quo of Korean archives and records management from the Governmental as well as professional activities for the development of the field in relation to the new legislation on records management. Among many concerns, this study primarily explores the following four perspectives: 1) the Government Archives and Records Services; 2) the Korean Association of Archives; 3) the Korean Society of Archives and Records Management; 4) the Journal of Korean Society of Archives and Records Management. One of the primary tasks of the is to build the special depository within which the Presidential Library should be located. As a result, the position of the GARS can be elevated and directed by an official at the level of vice-minister right under a president as a governmental representative of managing the public records. In this manner, GARS can sustain its independency and take custody of public records across government agencies. made efforts in regard to the preservation of paper records, the preservation of digital resources in new media formats, facilities and equipments, education of archivists and continuing, training of practitioners, and policy-making of records preservation. For further development, academia and corporate should cooperate continuously to face with the current problems. has held three international conferences to date. The topics of conferences include respectively: 1) records management and archival education of Korea, Japan, and China; 2) knowledge management and metadata for the fulfillment of archives and information science; and 3) electronic records management and preservation with the understanding of ongoing archival research in the States, Europe, and Asia. The Society continues to play a leading role in both of theory and practice for the development of archival science in Korea. It should also suggest an educational model of archival curricula that fits into the Korean context. The Journals of Records Management & Archives Society of Korea have been published on the six major topics to date. Findings suggest that "Special Archives" on regional or topical collections are desirable because it can house subject holdings on specialty or particular figures in that region. In addition, archival education at the undergraduate level is more desirable for Korean situations where practitioners are strongly needed and professionals with master degrees go to manager positions. Departments of Library and Information Science in universities, therefore, are needed to open archival science major or track at the undergraduate level in order to meet current market demands. The qualification of professional archivists should be moderate as well.