• 제목/요약/키워드: Field heat

검색결과 2,032건 처리시간 0.029초

Sharp Fin에 의한 초음속 유동장내 열전달 변화 연구 (A Study of Heat Transfer in Supersonic Flow Field on a Sharp Fin Shape)

  • 송지운;유만선;조형희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.371-374
    • /
    • 2006
  • 초음속 유동장 내에서 돌출된 sharp fin형상에 의해 발생하는 충격파로 인한 열전달 특성변화 연구를 수행하였다. IR camera를 이용하여 마하 3의 유동 내에 attack angle이 $10^{\circ}$ 부터 $20^{\circ}$ 의 fin을 돌출시켜 생기는 충격파에 의한 바닥면 열전달 계수 변화를 측정하였으며, 유동장의 변화를 알아보기 보기 위해 oil flow method를 사용하였다.

  • PDF

초음속 유동내에 분사되는 원형 제트 주위에서의 열전달 연구 (Study on Heat Transfer around a Circular Jet Ejected into a Supersonic Flow)

  • 이종주;유만선;조형희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.353-356
    • /
    • 2006
  • 본 논문에서는 초음속 유동장내에 분사된 이차제트 주변에서의 열전달 현상을 고찰 하였다 초음속 유동장내에 등열유속조건이 적용된 표면을 설치하고, jet to freestream momentum ratio의 변화에 따른 2차분사를 하여, 2차분사 노즐 주변의 표면온도변화를 적외선카메라를 통하여 측정하였으며, 이를 바탕으로 대류열전달계수를 계산하였다.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

자계 분포시 열유동 현상 분석을 통한 결합계 해석 (The coupling field analysis of a thermal transfer phenomenon by an magnetic field)

  • 손락원;장광용;배재남;김승주;최승길;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.862-863
    • /
    • 2007
  • In this article, we researched the characteristics of heat transfer of the bimetal for over-current protection device. Bimetal consists of two metals which have a different thermal expansion coefficient. To analyze the heat transfer characteristics, by using a bimetal which has a single metal, we analyzed the temperature distribution when bimetal acts a switch. As usual, heat source is applied to the bimetal. But, in the over-current protection switch, the current become heat source. So, by using the current as source, we performed the magnetic analysis and thermal analysis together.

  • PDF

요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성 (Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio)

  • 송정철;안준;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

초임계상태의 물에 대한 관 내 층류유동장 및 열전달계수 분포특성에 관한 연구 (A Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.768-778
    • /
    • 2003
  • Numerical analysis has been carried out to investigate laminar convective heat transfer in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variations of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudocritical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number, Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity to the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

Heat source control intelligent system for heat treatment process

  • Lee, JeongHoon;Cho, InHee
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.28-40
    • /
    • 2022
  • Although precise temperature control in the heat treatment process is a key factor in process reliability, there are many cases where there is no separate heat source control optimization system in the field. To solve this problem, the program monitors the temperature data according to the heat source change through sensor communication in a recursive method based on multiple variables that affect the process, and the target heat source value and the actual heat treatment heat source to match the internal air temperature and material temperature. A control optimization system was constructed. Through this study, the error rate between the target temperature and the atmosphere (material surface) temperature of around 10.7% with the existing heat source control method was improved to an improved result of around 0.1% using a process optimization algorithm and system.

Heat transfer enhancement in gas tungsten arc welding using azimuthal magnetic fields generated by external current

  • Kim, Yiseul;Lee, Jaewook;Liu, Xiaolong;Lee, Boyoung;Chang, Yunlong
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.113-125
    • /
    • 2017
  • This paper proposes the idea to enhance the heat transfer in Gas Tungsten Arc Welding (GTAW) by using the azimuthal magnetic field. The azimuthal magnetic field generated by the external currents makes the Lorentz force stronger, and consequently improves the heat transfer by the faster flow movement. The enhanced heat transfer might improve the welding performance by increasing the temperature at the workpiece. To validate the proposed idea, a two-dimensional axi-symmetric model of GTAW is built, and the multiphysics simulation of GTAW is carried out. As the analysis result, the distributions of electric current, electromagnetic fields, arc flow velocity, and temperature are investigated. Then, the proposed idea for heat transfer enhancement is validated by comparing the Lorentz force, flow velocity, and temperature distribution with and without azimuthal magnetic fields.

슈라우드로 차폐되어진 단일회전디스크 표면의 열전달 특성 (Heat Transfer Characteristics on a Single Rotating Disk with a Shrouded Cover)

  • 류구영;원정호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1029-1037
    • /
    • 2000
  • The present study investigates the local heat/mass transfer characteristics on a rotating disk which is the top disk covered with a shroud in HDD. The naphthalene sublimation technique is employed to determine the local heat/mass transfer coefficients on the rotating disk. Flow field measurements using Laser Doppler Anemometry (LDA) and numerical calculations are performed to analyze the flow patterns induced by the disk rotation. HDD has been developed for compactness and speedy data access, thus the rotating velocity of the disk is increased and the height of a hub is decreased. The experiments are conducted for the various hub heights of 5, 10 and 15 mm, for the rotating Reynolds numbers of $5.5{\times}10^4$ to $1.1{\times}10^5$ and for the effects of the presence of a read/write head arm. The results show that the heat transfer on the rotating disk is enhanced considerably for the decrease of the hub height and for the increase of the rotating Reynolds number. The head arm inserted in the cavity decreases the heat transfer despite the enhancement of tangential RMS velocity because of the deficit of the momentum in the flow field.