• Title/Summary/Keyword: Field heat

Search Result 2,032, Processing Time 0.037 seconds

Growth Characteristics and Yield of "Baeck Ji 1" a New High Variety of Angelica dahurica (白芷 新品種 "白芷 1號" 의 主要特性 및 收量性)

  • 정상환
    • Korean Journal of Plant Resources
    • /
    • v.10 no.1
    • /
    • pp.100-104
    • /
    • 1997
  • A new baekji(Angelica dahurica Bentham et Hooker) variety, Baekji l, was developed through a pure line selection at the Gyeongbug Provincial RDA during the period of 1990 to 1995. The variety was characterized to have high plant height. Long root length and large root diameter as compared with a check varicty of Bonghwa baekji but emergence date, flowering date and leaf number of Baekji l was similar to that of the check variety, and it was also more tolerant to nematode and heat stress. Peeled root color of Backji l was yellowbrown but number of the lateral root of the variety was greater. The dried-root yield of Baekji l in yield trial, regional adaptation trial and farmer's field trial was always $21\sim31%$ higher than that of the check variety.

  • PDF

Genetic Model of Mineral Exploration for the Korean Au-Ag Deposits; Mugeug Mineralized Area (한국 금-은 광상의 효율적 탐사를 위한 성인모델;무극 광화대를 중심으로)

  • 최선규;이동은;박상준;최상훈;강흥석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.423-435
    • /
    • 2001
  • The gold-silver vein deposits in the Mugeug mineralized area are emplaced in late Cretaceous biotite granite associated with the pull-apart type Cretaceous Eumseong basin. Mugeug mine in northern part is composed of multiple veins showing relatively high gold fineness and is characterized by sericitization, chloritization and epidotization. The ore-forming fluids were evolved by dilution and cooling mechanisms at relatively high temperature and salinity (=30$0^{\circ}C$,1~9 equiv. wt. % NaCl) and highly-evolved meteoric water ($\delta$$^{18}$ O;-1.2~3.7$\textperthousand$) and gold mineralization associated with sulfides tormed at temperatures between 260 and 22$0^{\circ}C$ and within sulfur fugacity range of 10$^{-11.5}$ ~ 10$^{-13.5}$ atm. In contrast, Geumwang, Geumbong and Taegueg mines show the low fineness values, in southern part are characterized by increasing tendency of simple and/or stockwork veins and by kaolinitization, silicificatitan, carbonatization and smectitization. These droposits formed at relatively low temperature and salinity (<23$0^{\circ}C$, <3 equiv. wt. % NaCl) from ore-forming fluids containing greater amounts of less-evolved meteoric waters ($\delta$$^{18}$ O;-5.5~4.0$\textperthousand$), and silver mineralization representing various gold-and/or silver-bearing minerals formed at temperatures between 200 and 15$0^{\circ}C$ and from sulfur fugacity range of 10$^{-15}$ ~10$^{-18}$ atm These results imply that mineralization in the Mugueg area formed at shallow-crustal level and categorize these deposits as low-sulfidation epithermal type. The genetic differences between the northern and southern parts reflect the evolution of the hydrothermal system due to a different physicochemical environment from heat source area (Mugeug mine) to marginal area (Taegeum mine) in a geothermal field.

  • PDF

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Bioactivity of the Extract of Coptis chinensis: In-vitro Antifungal Activity against Phytophthora capsici and Growth-promotion Effect in Red-pepper (황련 추출물의 고추역병에 대한 In-vitro 항진균 활성 및 고추 생육촉진 효과)

  • Ahn, Seon-Mi;Lee, Dong-Sin;Kim, Mi-Sun;Choi, Su-Ji;Choi, Chung-Sik;Lee, Jung-Bok;Jang, Han-Su;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.280-286
    • /
    • 2009
  • To investigate anti-phytopathogenic fungal activity of Coptis chinensis, the methanol extract and its organic solvent fractions were prepared. Using the extract and the fractions, in-vitro spore-germination inhibition and mycelial-growth inhibition activities were evaluated against Colletotrichum gloeosporioides, Phytohpthora capsici, Pyricularia grisea, Rhizoctonia solani, Botryosphaeri dothidea, Glomerella cingulata, respectively. Treatment of the methanol extract (500 mg/mL) into the spore of phytopathogenic fungi completely inhibited germinations for 5 days, except B. dothidea, and showed strong antifungal activities against P. grisea and B. cinerea, and antioomycetes activity against P. capsici. The minimal growth inhibition concentrations of the methanol extract against P. grisea, B. cinerea and P. capsici were 300, 300, and 500 mg/mL, respectively. For practical application of C. chinensis in red-pepper field, the hot-water extract (1,000 mg/mL) was prepared in commercial facility, after evaluation of heat stability and solvent-extraction yields of antifungal substances. The 3-times leaf-spray of the extract from June to August, 2008 did not show any deleterious effect to red-pepper. In fact, the leaf-spray promoted plant growth including leaf, root and fruit. The average weight and rind of each fruit were increased to 119% and 117% comparison to those of without treatments. Our results suggest that C. chinensis is a useful source for control of red-pepper diseases and plant growth.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

A Study on the Engineering Property and Durability of Recycled Concrete with Replacement Ratio of Recycled Fine Aggregate and Fly-ash (재생잔골재 및 플라이애시 대체율에 따른 재생콘크리트의 공학적 특성 및 내구성능에 관한 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Whan;Cho, Bong-Suk;Kim, Young-Sun;Moon, Hyung-Jae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.89-97
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate resource and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. On the other hand, the treatment of fly-ashes that of industrial by-product originated in the steam power plant is discussed by the continuous increasing of origination quantities. In the ease of using fly-ash, advantages are the improvement of workability, viscosity and long-time strength, and the reduction of hydration heat under the early ages, as the admixtures for concrete, but the studies for the application of fly-ash as recycled concrete admixtures are inadequacy. There fore, in this study, through investigating the properties of fresh, hardened and durability according to the replacement of recycled fine aggregate and fly-ash, it is intended to propose the fundamental data for structural application of recycled concrete using recycled fine aggregate and fly-ash. As the result of this study, they arc shown that the engineering properties and durability, in the case of replacement ratio 100% of recycled fine aggregate, arc similar to those of concrete using natural fine aggregate, so it is considered that recycled fine aggregate could be used as the fine aggregate for concrete. Also, the performances of recycled concrete are improved by replacing fly-ash.

  • PDF

INHIBITORY EFFECT OF Er:YAG LASER ON THE GROWTH OF STREPTOCOCCUS MUTANS (Er:YAG 레이저 조사가 Streptococcus mutans의 증식억제에 미치는 효과)

  • Song, Gwang-Chul;Lee, Chang-Seop;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.15-24
    • /
    • 2003
  • The purpose of this study is to investigate the sterilization effect of Er:YAG laser against the intraoral acid producing bacterium, S. mutans, by irradiating the culture solution containing S. mutans KCTC 3065 with Er:YAG laser having a $650{\mu}m$ diameter beam through the non-contact method. We obtained the following results after examining the temperature changes of the culture solution, numbers of bacterial colonies, and acid-producing ability and attaching ability on teeth by measuring the amount of extracellular polysaccharide produced by S. mutans. The number of bacterial colony was decreased in $10{\mu}l$ culture solution irradiated with laser in overall compared to the control solution. The number decreased as the irradiation intensity and pulse repetition rate were larger and as the exposure time was increased. However, it did not change significantly in $100{\mu}l$ culture solution compared to the control solution. Although the acid-producing ability of S. mutans was inhibited for a certain duration after laser irradiation in 10r1 bacterial culture solution, it did not change in $100{\mu}m$ solution compared with the control solution. The amount of extracellular polysaccharide synthesized by S. mutans was partially decreased through laser irradiation in $10{\mu}m$ culture solution but did not change in $100{\mu}m$ culture solution. Based on these findings, we concluded that Er:YAG laser has an sterilization effect on S. mutans in which we presume that the mechanism is through the heat effect rather than the mechanical effect from development of ultrasound.

  • PDF

The Distribution of ${\gamma}{\delta}$ T Cells in Tuberculous Lymphadenopathy (결핵성 림프절에서 ${\gamma}{\delta}$ T 림프구의 분포에 관한 연구)

  • Shim, Tae-Sun;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.484-488
    • /
    • 1994
  • Background : The antigen-specific receptor on the surface of most peripheral T lymphocytes is a disulfide-linked heterodimer composed of $\alpha$ and $\gamma$ subunits, noncovalently associated with CD3 polypeptides. Recently, a novel type of CD3-associated heterodimer was described on a T cell subset that does not express CD4 or CD8 molecules. This second type of TCR dimer is composed of chains encoded for by the $\gamma$- and $\delta$-TCR genes. These cells may exert both cytotoxic and lymphokine producing functions. Although it was reported that some ${\gamma}{\delta}$-TCR might recognize an MHC-linked determinant, the funεtion or physiologic ligand for this new receptor is not yet clear. It was found that ${\gamma}{\delta}$-TCR can react with 65 kD heat shock protein of M. tuberculosis, which suggests the possible protective role of ${\gamma}{\delta}$ T lymphocytes against tuberculosis. In our previous study, there was neither the increase in number nor the functional activation of ${\gamma}{\delta}$ T cells in the peripheral blood from patients with pulmonary tuberculosis. Now we report the distribution of ${\gamma}{\delta}$ T cells in the regional sites of M. tuberculosis infection, especial1y tuberculous lymphadenitis. Methods : Lymph nodes from patients with pathologically-proven tuberculous lymphadenopathy (n=5) and reactive hyperplasia (n=3) were used. Tissues were frozen in liquid nitrogen immediately after removal and stored below $-70^{\circ}C$. The cryostat sections of these frozen specimens were stained with anti-Leu-4 Ab, Identi-T TCR ${\delta}1$, and Identi-T ${\beta}F1$. The number of positively stained cells were counted at high power field. Results : The infiltration of ${\gamma}{\delta}$ T cells was significantly higher in the lymph nodes from patients with tuberculous lymphadenopathy than that with reactive hyperplasia ($16.3{\pm}10.3%$ vs. $1.7{\pm}1.5%$). Conclusion : These results suggest that ${\gamma}{\delta}$) T cells may play a role in the defense against M. tuberculosis infection, especially in the regional sites of infection.

  • PDF

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (2)온실내 대기환경에 미치는 작물의 영향 분석을 위한 CFD 모델개발 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Hong Se-Woon;Sung Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The heterogeneity of crop transpiration is important to clearly understand the microclimate mechanisms and to efficiently handle the water resource in greenhouses. A computational fluid dynamic program (Fluent CFD version 6.2) was developed to study the internal climate and crop transpiration distributions of greenhouses. Additionally, the global solar radiation model and a crop heat exchange model were programmed together. Those models programmed using $C^{++}$ software were connected to the CFD main module using the user define function (UDF) technology. For the developed CFD validity, a field experiment was conducted at a $17{\times}6 m^2$ plastic-covered mechanically ventilated single-span greenhouse located at Pusan in Korea. The CFD internal distributions of air temperature, relative humidity, and air velocity at 1m height were validated against the experimental results. The CFD computed results were in close agreement with the measured distributions of the air temperature, relative humidity, and air velocity along the greenhouse. The averaged errors of their CFD computed results were 2.2%,2.1%, and 7.7%, respectively.