• Title/Summary/Keyword: Field emission device

Search Result 178, Processing Time 0.036 seconds

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Eu Contents for Non-volatile Memory Device Application (비휘발성 메모리 소자응용을 위한 Eu 첨가량에 따른 BET 박막의 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • The effect of Eu contents on the ferroelectric properties of $Bi_{4-x}Eu_xTi_3 O_{12}$ (BET) thin films has been investigated. Bismuth Europium titanate thin films with a Eu contents were prepared on the $Pt/Ti/SiO_2/Si$ substrate by metal-organic decomposition technique. The structure and the morphology of the films were analyzed using X-ray diffraction (XRD) and field emission scanning microscopy (FE-SEM), respectively. From the XRD analysis, it was found that BET thin films have polycrystalline structure, and the layered-perovskite phase is obtained when the Eu contents exceeds 0.2 (x > 0.2). Also, the ferroelectric characteristics of the BET thin films were found to be dependent on the Eu content. Particularly, the BET films doped with x = 0.75 show better ferroelectric properties (remanent polarization 2Pr = 60.99 C/$cm^2$ and only a little polarization fatigue up to $3.5{\times}10^9$ bipolar switching cycling) than those doped with other Eu contents.

Gallium Nitride Nanoparticle Synthesis Using Non-thermal Plasma with N2 Gas

  • Yu, Gwang-Ho;Kim, Jeong-Hyeong;Yu, Sin-Jae;Ryu, Hyeon;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.236.1-236.1
    • /
    • 2014
  • Compounds of Ga, such as gallium oxide (Ga2O3) and gallium nitride (GaN), are of interest due to its unique properties in semiconductor application. In particular, GaN has the potentially application for optoelectronic device such as light-emitting diodes (LEDs) and laser diodes (LDs) [1]. Nanoparticle is an interesting material due to its unique properties compared to the bulk equivalents. In this report, we develop a synthesizing method for gallium nitride nanoparticle using non-thermal plasma. For gallium source, the gallium is heated by thermal conduction of tungsten boat which is heated by eddy current induced from RF current in antenna. Nitrogen source for nanoparticle synthesis are from inductively coupled plasma with N2 gas. The synthesized nano particles are analyzed using field-emission scanning microscope (FESEM), transmission electron microscope (TEM) and x-ray photoelectron spectroscopy (XPS). The synthesized particles are investigated and discussed in wide range of experiment conditions such as flow rate, pressure and RF power.

  • PDF

Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.187-191
    • /
    • 2014
  • Indium oxide ($In_2O_3$) nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide ($In(OH)_3$) NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into $In_2O_3$ by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the $In_2O_3$ NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.

Simulations Of a Self-focusing Carbon Nanotube Triode Field Emission Device (전자빔을 자체 집속하는 탄소나노튜브 삼전극 전계방출소자의 시뮬레이션)

  • Lee, Tae-Dong;Ryu, Seong-Ryong;Byun, Chang-Woo;Kim, Young-Kil;Ko, N.J.;Chun, H.T.;Park, J.W.;Ko, S.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.538-541
    • /
    • 2002
  • 탄소나노튜브 (CNT)가 도포된 평면형 에미터와 원형 개구의 게이트 전극을 가지는 삼전극 전계방출 소자의 전계방출 특성을 시뮬레이션하였다. 체계적인 시뮬레이션을 위해 소자 내 전위의 공간적 분포 특정을 결정하는 전계형상인자 $\gamma$를 정의하고 이 값에 따른 전위분포의 특성과 방출 전자의 궤적을 계산하였다. 계산 결과$\gamma$ > 1 인 전압조건에서는 에미터의 가운데를 중심으로 강한 전자방출이 발생하고 전자빔이 구조의 축 방향으로 자체 집속됨을 알 수 있었다. 이렇게 되면 에미터와 게이트의 정렬이 전혀 필요하지 않게 되며 또한 별도의 전자집속회로 없이도 에미터와 양극에 있는 형광체가 1:1 로 대응하는 획기적인 디스플레이 구조를 가능하게 해 준다 적정 전압조건에서 CNT의 전계강화인자 $\beta$의 변화에 따른 총 전류를 계산한 결과,$\beta$ >3000인 CNT를 사용할 경우 실제 소자로서 구현이 가능함을 확인하였다.

  • PDF

Evaluation Method for Improvement of Indoor Air Quality Using Mass Balance (물질수지를 이용한 실내공기질 개선정도 평가)

  • Kim, Young-Hee;Kim, Moon-Hyeon;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.913-918
    • /
    • 2006
  • Despite the wide distribution of air pollutants, the concentrations of indoor air pollutants may be the dominant risk factor in personal exposure due to the fact that most people spend an average of 80% of their time in enclosed buildings. Researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide$(TiO_2)$ coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde and nitrogen dioxide emission rate in indoor environments by $TiO_2$ coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor net quality.

An Investigation of the Effect of Diesel Particulate Filter for Heavy-duty Diesel Engine on Emission Reduction (디젤입자상물질 여과장치의 배기저감성능 효과 분석)

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.1 s.94
    • /
    • pp.36-42
    • /
    • 2007
  • Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. In the Heavy Duty Diesel area, the Continuously Regeneration trap has been widely applied in the retrofit market. As the Special act for the improvement of air quality in the capital area, the retrofit program for DPF to used diesel vehicle has progressed favorably and there are currently over 1,000 of these DPF in use in retrofit applications in korea. These DPF comprise a specially formulated Diesel Oxidation Catalyst upstream of a DPF. The $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to evaluate exactly the DPF devices according to the regulation of DPF certificate test procedure for retrofit(ministry of environment(MOE) announcement NO. 2005-16). To do so the understand of that regulation like the standard of PM reduction rate is needed. In this study the test procedure including test cycle and BPT test condition was examined and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and seoul-10 mode test, no defect could be showed.

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.

Synthesis of Silver Nano-particles by the Solution Plasma Sputtering Method (유체 플라즈마 방식을 사용한 은 나노파티클의 합성)

  • Yoo, Seung-cheol;Shin, Hong-Jik;Choi, Won Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.216-218
    • /
    • 2016
  • In this study, we used not chemical and physical synthesis method but the solution plasma sputtering method in the synthesis of silver nano-particles. Synthesis of all the silver nano-particles was conducted for 1hour in 360 ml of distilled water and characteristics of changing the input voltage and frequency of the synthesised silver nano-particles by using the solution plasma sputtering method were analyzed through FE-SEM(Field Emission-Scanning Electron Microscope). We changed the input voltage from 8 kV to 10 kV in steps of 1 kV, input frequency from 20 kHz to 30 kHz in steps of 5 kHz in the solution plasma reactor with the advanced device which can control the DC voltage and frequency. We confirmed that the size of silver nano-particles were larger according to the change of the input voltage and frequency.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF