• Title/Summary/Keyword: Field effect

Search Result 12,310, Processing Time 0.047 seconds

Observation of bubble dynamics under water in high-magnetic fields using a high-speed video camera

  • Lee, Seung-Hwan;Takeda, Minoru
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The observations of rapid motion of bubbles under water for approximately 50ms or less in high . magnetic fields of 10 T have been carried out successfully for the first time. The observation system constructed is composed of a high-speed video camera, a telescope, a cryostat with a split-type superconducting magnet, a light source, a mirror and a transparent sample cell. Using this system, the influence of magnetic field on the path and shape of single bubbles of $O_2$(paramagnetism) and $N_2$ (diamagnetism) has been examined carefully. Experimental values describing the path are in good agreement with theoretical values calculated on the basis of the magneto-Archimedes effect, despite the effect of magnetism on the bubble. However, no effect of magnetism on the shape of the bubble is observed In addition, the influence of magnetic field on drag coefficient of the bubble is discussed.

Electrical Properties of a CuPc Field-Effect Transistor Using a UV/Ozone Treated and Untreated Substrate

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.40-42
    • /
    • 2011
  • An organic field-effect transistor (OFET) was fabricated using a copper phthalocyanine (CuPc) as the active layer on the silicon substrate. The CuPc FET device was configured as a top-contact type. The substrate temperature was room temperature. The CuPc thickness was 40 nm, and the channel length and channel width were 100 ${\mu}m$ 3 mm, respectively. Typical current-voltage (I-V) characteristics of the CuPc FET were observed and subsequently compared to the UV/ozone treatment on substrate surface.

Fabrication of Pentacene Thin Film Transistors and Their Electrical Characteristics (Pentacene 박막트랜지스터의 제조와 전기적 특성)

  • 김대엽;최종선;강도열;신동명;김영환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.598-601
    • /
    • 1999
  • There is currently considerable interest in the applications of conjugated polymers, oligomers and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field effect transistor and light emitting didoes. In this study, Pentacene thin film transistors(TFTs) were fabricated on glass substrate. Aluminum and Gold wei\ulcorner used fur the gate and source/drain electrodes. Silicon dioxde was deposited as a gate insulator by PECVD and patterned by R.I.E. The semiconductor layer of pentacene was thermally evaporated in vaccum at a pressure of about 10$^{-8}$ Torr and a deposition rate 0.3$\AA$/sec. The fabricated devices exhibited the field-effect mobility as large as 0.07cm$^2$/Vs and on/off current ratio larger than 10$^{7}$

  • PDF

Rubber-stamp-printed Poly (3-hexylthiophene) organic field-effect transistor on a plastic substrate with high mobility (고분자 기판 상에 Rubber-stamp-printing 방법으로 제작한 유기박막 트랜지스터에 관한 연구)

  • Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.164-168
    • /
    • 2005
  • We report high performance poly (3-hexylthiophene) organic field-effect transistors fabricated on a plastic substrate. The polymer active channel layer was directly printed by the rubber stamp printing method with a pre-patterned elastomer stamp. As a result. organic transistors having average field-effect mobility of 0.079 $cm^2/Vs$ and on/off ratio of $10^4{\sim}10^5$ were realized on a plastic substrate. Also, through the investigation of the molecular ordering of rubber-stamp-printed poly (3-hexylthiophene) films using synchrotron grazing-incidence X-ray diffraction measurements, the films were found to have edge-on structure which is favorable in realizing high performance organic transistors.

  • PDF

Electrorheological Effect of the Suspension Composed of Bismark Brown Chitosan Succinate as the Dispersed Phase

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.21-25
    • /
    • 2007
  • The electrorheological effect of the suspension composed of Bismark Brown chitosan succinate as the dispersed phase in silicone oil was investigated. Bismark Brown chitosan succinate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.84 power on the electric field. The experimental results for the suspension correlated with the polarization model and Bismark Brown chitosan succinate suspension behaved as an anhydrous ER fluid. On the basis of the results, Bismark Brown chitosan succinate suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amide and amine polar groups of the Bismark brown chitosan succinate particles.

Super Coupling Dual-gate Ion-Sensitive Field-Effect Transistors

  • Jang, Hyun-June;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.239-239
    • /
    • 2013
  • For more than four decades, ion-sensitive field-effect transistor (ISFET) sensors that respond to the change of surface potential on a membrane have been intensively investigated in the chemical, environmental, and biological spheres, because of their potential, in particular their compatibility with CMOS manufacturing technology. Here, we demonstrate a new type of ISFET with dual-gate (DG) structure fabricated on ultra-thin body (UTB), which highly boosts sensitivity, as well as enhancing chemical stability. The classic ion-sensitive field-effect transistor (ISFET) has been confronted with chronic problems; the Nernstian response, and detection limit with in the Debye length. The super-coupling effects imposed on the ultra thin film serve to not only maximize sensitivity of the DG ISFET, but also to strongly suppress its leakage currents, leading to a better chemical stability. This geometry will allow the ISFET based biosensor platform to continue enhancement into the next decade.

  • PDF

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.

ANOMALOUS HALL EFFECT IN AMORPHOUS $Fe_{0.33}Zr_{0.67}$ ALLOY

  • Rhie, K.;Naugle, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.952-955
    • /
    • 1995
  • It is well kown that the side-jump effect, originated from the spin-orbit scatterring of the transport electrons at the site of spin-orbit scatterers, is the reason for the anomalus Hall resistivity which is proportional to the magnetization. Our recent magnetization study implied that abundant ferromagnetic Fe clusters made of for Fe ions dominate the temperature and field dependence of magnetization at high field and low temperature regime for a paramagnetic $Fe_{0.33}Zr_{0.67}$ alloy. We measured the Hall resistivity of this alloy and observed that the Hall resistivity followed the M-H cure at low temperature, and the Hall coefficients at moderate temperatures were proportional to the magnetic susceptibility. We explain the behavior of Hall resistivity with the change of field and temperature in terms of side-jump effect.

  • PDF

THE EFFECT OF OVER AND UNDERLAYER ON THE MAGNETORESISTANCE IN Co-Ag NANO-GRANULAR ALLOY FILMS

  • Kim, Yong-Hyuk;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.451-455
    • /
    • 1995
  • The composition and thickness dependence and the ferromagnetic under- and overlayer effect on the magnetoresistance ratio and saturation field of the Co-Ag nano-granular films were investigated. The maximum magnetoresistance (23% at R.T.) in the as-deposited state was obtained in the $3000{\AA}$ $Co_{30} Ag_{70}$ bare alloy film. As the thickness of the alloy films decreased below $500{\AA}$, the MR ratio decreased because of the resistivity increase and the non-uniform film formation. We showed that the ferromagnetic over- and underlayer could reduce the saturation field of the nano-granular films via exchange coupling effect. The magnetoresistance and the saturation field of the $100{\AA}$ alloy film were 3.65 % and 2.85 kOe respectively and those of the under- and overlayered alloy films with $200{\AA}$ Fe were 3.3 % and 1.23 kOe respectively.

  • PDF

Tunneling Field-Effect Transistors for Neuromorphic Applications

  • Lee, Jang Woo;Woo, Jae Seung;Choi, Woo Young
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.142-153
    • /
    • 2021
  • Recent research on synaptic devices has been reviewed from the perspective of hardware-based neuromorphic computing. In addition, the backgrounds of neuromorphic computing and two training methods for hardware-based neuromorphic computing are described in detail. Moreover, two types of memristor- and CMOS-based synaptic devices were compared in terms of both the required performance metrics and low-power applications. Based on a review of recent studies, additional power-scalable synaptic devices such as tunnel field-effect transistors are suggested for a plausible candidate for neuromorphic applications.