• Title/Summary/Keyword: Field coil

Search Result 806, Processing Time 0.024 seconds

Test results of a 5 kW fully superconducting homopolar motor

  • Lee, J.K.;Park, S.H.;Kim, Y.;Lee, S.;Joo, H.G.;Kim, W.S.;Choi, K.;Hahn, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

Analysis of the skin effect on the coil with high frequency current source (고주파 전원에 의한 코일의 표피효과 해석)

  • Jang, S.M.;Seo, J.H.;Kim, H.K.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.288-290
    • /
    • 1997
  • The electromagnetic theory is applicated on the field of electromagnetic continuous casting(EMC). This paper treats the stream phenomena of high frequency current on the solid-loop coil of which consists the hollow conductor. The governing equation is derived from elctromagnetic field theory and the characteristics are analyzed by FEM. The results may be availabe data on designing the optimum shape of the coil for the improved pinch effect.

  • PDF

Calculation of Critical Current Density Degradation in the HTS Magnet due to Mechanical Strain (고온초전도마그네트 내부의 스트레인에 의한 임계전류밀도 감소 계산)

  • Lee, In-Kyu;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.260-263
    • /
    • 1997
  • In this paper, we describe the mechanical strain effects on the critical current density of HTS (BSCCO) pancake-type-magnet. Firstly the strain of pancake coil is calculated in terms of coil length, which is also a function of angle, and then the critical current density degradation due to strain is calculated along the coil. We assumed that the critical current density degradation pattern is same with that of $Nb_{3}Sn$. We also modelled the effects of magnetic field on the critical curent degradation, and the results are compared with those with null magnetic field.

  • PDF

Magnetic Field Analysis of Deflection Yoke Using Novel Technique for the Accurate Analysis of Current Distribution (새로운 전류분포 해석법을 이용한 자기 편향 요크의 자계 해석)

  • Im, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.590-593
    • /
    • 2000
  • The analysis of current distribution in a solidly modeled coil is very important for accurate analysis of electric machines such as deflection yoke(DY). In general, Modeling every coils is impossible for analyzing magnetic field using the 3-D FEM, so solidly modeled coil is usually used. Some methods have been developed for analyzing current distribution, but these methods have fatal disadvantage that they cannot be applied to an arbitrary shaped coil and that they yield numerical errors. In this paper. a novel method for resolving the problems mentioned above is proposed. The new method is verified by the application to a DY and it shows improved results.

  • PDF

Design of RF Coil for Low Magnetic-Field Osteoblast Reformation System (저 자기장 조골세포 재형성 시스템용 RF 코일 설계)

  • Mun, Sung Hyuk;Cho, Choon Sik;Kim, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.821-827
    • /
    • 2018
  • In devices used for re-forming osteoblasts to treat osteoporosis, a magnetic field is applied from the outside of the bone, and the minerals contained in the bone are aligned in a certain direction and undergo precessional motion. When a $90^{\circ}$ RF pulse is applied by using an RF coil, protons of minerals are brought to an excited state, and phosphorus activity promoting the deposition of osteoblasts in the bone is increased, thereby reshaping the bone. Miniaturizing the RF coil that generates a signal corresponding to the harmonic of the precessional motional frequency by means of the $90^{\circ}$ RF pulse can drastically reduce the overall size of the bone reshaping system. In this study, we propose a methodology for the miniaturization of the RF coil that can be used for osteoblast re-formation using a bone reshaping system. The capacitance of the designed RF coil is 25 pF, the inductance is approximately 100 nH, and the resonance frequency is 96 MHz. The radius of the end ring of the designed RF coil is 18 cm, and the total length of the leg is $2{\times}11.6cm$. The performance of the coil is verified through post-design measurement.

Development of Birdcage RF coil for 3T Animal MR Imaging

  • 추명자;최보영;강세권;최치봉;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.85-89
    • /
    • 2002
  • We authors developed a new small-size birdcage RF coil for animal MR images. And we compared signal-to-noise ratio (SNR) of the new small coil with a conventional knee coil. The dimension of the low-pass type birdcage coil with 12 elements at 37 MRI system are 13 cm outer diameter, 12 cm inner diameter and 20 cm length. For each element, the width of copper tape is 0.05 mm, thickness is 8 mm and length is 20 cm. The small birdcage coil with 12 elements exhibited 7 resonance modes. The isolation of the quadrature channel could be achieved more than 20 ㏈. The coil quality factor (Q value) was 98.6. The SNR of the animal coil was 243.2 on the average and was about twice as high as the conventional knee coil. The present study successfully demonstrated that the small birdcage coil could provide high quality animal MR images with the improved SNR. Therefore, it is expected that the small birdcage coil could be used in the clinical diagnosis and research studies for veterinary medicine in the near future.

  • PDF

Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition (3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발)

  • Shin, Chan-Bai;Kim, Jin-Dae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.

Effect of Induction of Electromagnetic Field by Partitioned Coils on Fracture Energy of Steel Fiber Reinforced Mortar (분할된 코일을 이용한 전자기장 유도가 강섬유보강몰탈의 파괴에너지에 미치는 영향)

  • Moon, Do-Young;Mukharromah, Nur Indah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 2022
  • In this experimental study, the effect of continuously changing the position of electromagnetic force using several coils and a relay switch on fracture energy was investigated. Normal mortar and steel slag mortar specimens in which 50 % and 100 % of sand was replaced with steel slag were cast and exposed to electromagnetic field. The electric field was induced by one coil without a relay switch as an existing method and by partitioning the coil and continuously changing the position using a relay switch. The fracture energy was calculated from the load-vertical displacement curve obtained from the experiment and compared with each other. As a result of the experiment, it was confirmed that the method of partitioning the coil and changing the position of electromagnetic force by using a relay switch is effective in increasing the fracture energy even if the same amount of power is used.