• Title/Summary/Keyword: Field Operations Data

Search Result 309, Processing Time 0.034 seconds

Comparative Study of Ship Image Classification using Feedforward Neural Network and Convolutional Neural Network

  • Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.221-227
    • /
    • 2024
  • In autonomous navigation systems, the need for fast and accurate image processing using deep learning and advanced sensor technologies is paramount. These systems rely heavily on the ability to process and interpret visual data swiftly and precisely to ensure safe and efficient navigation. Despite the critical importance of such capabilities, there has been a noticeable lack of research specifically focused on ship image classification for maritime applications. This gap highlights the necessity for more in-depth studies in this domain. In this paper, we aim to address this gap by presenting a comprehensive comparative study of ship image classification using two distinct neural network models: the Feedforward Neural Network (FNN) and the Convolutional Neural Network (CNN). Our study involves the application of both models to the task of classifying ship images, utilizing a dataset specifically prepared for this purpose. Through our analysis, we found that the Convolutional Neural Network demonstrates significantly more effective performance in accurately classifying ship images compared to the Feedforward Neural Network. The findings from this research are significant as they can contribute to the advancement of core source technologies for maritime autonomous navigation systems. By leveraging the superior image classification capabilities of convolutional neural networks, we can enhance the accuracy and reliability of these systems. This improvement is crucial for the development of more efficient and safer autonomous maritime operations, ultimately contributing to the broader field of autonomous transportation technology.

The Application of Genetic Algorithm for the Identification of Discontinuity Sets (불연속면 군 분류를 위한 유전자알고리즘의 응용)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.47-54
    • /
    • 2005
  • One of the standard procedures of discontinuity survey is the joint set identification from the population of field orientation data. Discontinuity set identification is fundamental to rock engineering tasks such as rock mass classification, discrete element analysis, key block analysis. and discrete fracture network modeling. Conventionally, manual method using contour plot had been widely used for this task, but this method has some short-comings such as yielding subjective identification results, manual operations, and so on. In this study, the method of discontinuity set identification using genetic algorithm was introduced, but slightly modified to handle the orientation data. Finally, based on the genetic algorithm, we developed a FORTRAN program, Genetic Algorithm based Clustering(GAC) and applied it to two different discontinuity data sets. Genetic Algorithm based Clustering(GAC) was proved to be a fast and efficient method for the discontinuity set identification task. In addition, fitness function based on variance showed more efficient performance in finding the optimal number of clusters when compared with Davis - Bouldin index.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

A Study on an Error Correction Code Circuit for a Level-2 Cache of an Embedded Processor (임베디드 프로세서의 L2 캐쉬를 위한 오류 정정 회로에 관한 연구)

  • Kim, Pan-Ki;Jun, Ho-Yoon;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Microprocessors, which need correct arithmetic operations, have been the subject of in-depth research in relation to soft errors. Of the existing microprocessor devices, the memory cell is the most vulnerable to soft errors. Moreover, when soft errors emerge in a memory cell, the processes and operations are greatly affected because the memory cell contains important information and instructions about the entire process or operation. Users do not realize that if soft errors go undetected, arithmetic operations and processes will have unexpected outcomes. In the field of architectural design, the tool that is commonly used to detect and correct soft errors is the error check and correction code. The Itanium, IBM PowerPC G5 microprocessors contain Hamming and Rasio codes in their level-2 cache. This research, however, focuses on huge server devices and does not consider power consumption. As the operating and threshold voltage is currently shrinking with the emergence of high-density and low-power embedded microprocessors, there is an urgent need to develop ECC (error check correction) circuits. In this study, the in-output data of the level-2 cache were analyzed using SimpleScalar-ARM, and a 32-bit H-matrix for the level-2 cache of an embedded microprocessor is proposed. From the point of view of power consumption, the proposed H-matrix can be implemented using a schematic editor of Cadence. Therefore, it is comparable to the modified Hamming code, which uses H-spice. The MiBench program and TSMC 0.18 um were used in this study for verification purposes.

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF

A Study on the Advancement Planning of Telecommunications Infrastructure of Educational Facilities for e-Learning (e-러닝을 위한 교육시설의 정보통신 인프라 고도화 계획에 관한 연구)

  • Park, Tong-So;Park, Chan-Joo;Kang, Hee-Su
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • As a study on the advancement planning for the telecommunications infrastructure of the educational facilities for the purpose of the proliferation of e-learning, this study was conducted with the intents of preparing for the design guidelines to be considered in the initial stage of an architectural design for applying WLANs(wireless LANs), which play a role as the international standard for next generation of telecommunications, to the educational facilities and of making a proposal for changes of the existing computer rooms according to the appearance of new teaching and learning tools, for example, digital textbooks, and the proliferation of personal information devices. In this study, the design guidelines were made by analyzing the elements to be applied to architecture designs as well as understanding the trend of the cabling, pathways and spaces requirements in the area of telecommunications after examining the relevant international standards, such as ANSI and TIA, etc., in order for applying WLANs to the educational facilities. In addition, a field survey was conducted targeting on the elementary schools in 'C' city in order to suggest a proposal for the improvements of operations and maintenance of the existing computer labs and computers. As the results of analyzing the data from the field study, it was surveyed that the following matters should be urgently improved in order for the schools to be developed as Ubiquitous schools in the future: First, the biggest hold-up is how to maintain the desktop computers well. Second, there are some limitations far the students to use the computers enough due to the lack of the number of computers. Third, the computer education for the students is limited to instructing the students in training themselves only for the functions of each kind of application software.

An FPGA Implementation of Parallel Hardware Architecture for the Real-time Window-based Image Processing (실시간 윈도우 기반 영상 처리를 위한 병렬 하드웨어 구조의 FPGA 구현)

  • Jin S.H.;Cho J.U.;Kwon K.H.;Jeon J.W.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.223-230
    • /
    • 2006
  • A window-based image processing is an elementary part of image processing area. Because window-based image processing is computationally intensive and data intensive, it is hard to perform ail of the operations of a window-based image processing in real-time by using a software program on general-purpose computers. This paper proposes a parallel hardware architecture that can perform a window-based image processing in real-time using FPGA(Field Programmable Gate Array). A dynamic threshold circuit and a local histogram equalization circuit of the proposed architecture are designed using VHDL(VHSIC Hardware Description Language) and implemented with an FPGA. The performances of both implementations are measured.

Transfacial Surgical Approaches to Secure Wide Exposure of the Skull Base

  • Kim, Sin Rak;Lee, Jung Woo;Han, Yea Sik;Kim, Han Kyu
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Background: Treatment of skull base tumors is challenging due to limited access and presence of important neurovascular structures nearby. The success of a complete tumor resection depends on the extent of tumor exposure and secure field of view. While these tumors are often removed by transcranial endoscopic access, transfacial approach is sometimes required depending on the location and size of the tumor. This study describes various transfacial approaches in patients undergoing skull base tumor resection. Methods: From March to November 2013, 15 patients underwent skull base tumor resection via transfacial accesses at a tertiary institution. Data were reviewed for patient demographics, type of access used, completeness of tumor resection, surgical outcome, and postoperative complications. Results: Two clivus tumor patients underwent transmaxillary approach; three tuberculum-sellae and suprasellar-hypothalamus tumor patients underwent transbasal approach; three clinoid and retrobulbar intraconal orbital tumor patients underwent orbitozygomatic approach; and seven petroclival-area, pons, cavernous sinus, and lateral-sphenoid-wing tumor patients underwent zygomatic approach. In all cases, the upper and lower margins of the tumor were visible. Complete tumor removal consisted of 10 cases, and partial tumor removal in 5. There were no immediate major complications observed for the transfacial portion of the operations. The overall cosmetic results were satisfactory. Conclusion: Plastic surgeons can use various transfacial approaches according to the location and size of skull base tumors to secure a sufficient field of view for neurosurgeons.

Development of a Smartphone Application to Investigate Unsurfaced Road Conditions in Mines (광산 비포장도로 상태 조사를 위한 스마트폰 애플리케이션 개발)

  • Choi, Yosoon;Kim, Hunmu;Suh, Jangwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.555-568
    • /
    • 2018
  • To perform efficient and safe haulage operations in mines, the condition of unsurfaced roads where dump trucks are moving should be regularly investigated, and systematic maintenance should be carried out according to the results. In this study, we developed a smartphone application that can be used to periodically investigate the unsurfaced road conditions in mines. Using the developed application, necessary data can be easily collected on site to evaluate the condition of unsurfaced roads according to the Unsurfaced Road Condition Index (URCI) evaluation system presented by the US Army Corps of Engineers. The smartphone application was tested at several sections of unsurfaced road in the Ilkwang mine, Busan, Korea. The results showed that the field investigation about 7 factors considered in the URCI evaluation system can be conducted through the user interface screen, and the URCI value can be calculated in the field to evaluate the condition of unsurfaced road. The smartphone application developed in this study can be useful for surveying and evaluating the unsurfaced road conditions at the mine site.