• 제목/요약/키워드: Field Equations

검색결과 1,842건 처리시간 0.036초

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

지구 중력장 내에서 성립하는 운동 상태 방정식의 해를 구하기 위한 벡터의 스칼라 프로덕트 응용 (Application of Vector Scalar Product to Solve the Kinematic Equations in the Earth's Gravitational Field)

  • 엄기홍
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.217-222
    • /
    • 2017
  • 지구 중력장 내에 위치한 물체는 연직 아래 방향의 힘을 받고 있다. 중력장 내에서 물체의 운동을 기술하기 위하여 운동상태 방정식을 이용한다. 자유 낙하하는 물체를 해석할 때 기준 방향은 연직 하방을 +y으로, 연직위로 던져 올린 물체를 해석할 때 기준방향은 연직상방을 +y으로, 연직 아래로 던져 내린 물체를 해석할 때, 기준 방향은 연직 하방을 +y으로 선택하여 해석함이 일반적이다. 이 논문에서는 두 벡터의 스칼라 곱 (즉, 도트 곱)을 이용하여 연직 상방 또는 하방 두 경우를 방향으로 선택하여 구성한 벡터 운동 상태 방정식(vector kinematics equations)을 해석의 결과가 서로 일치함을 제시한다. 두 벡터의 스칼라 곱 (즉, 도트 곱)을 이용하여 물체의 상태 방정식를 해석한 예는 선행 연구에서 거의 찾아볼 수가 없다. 이 결과를 이용하면, 수평면의 방향 또는 빗각을 이루는 방향의 초속도로 던져 올리거나 던져 내린 물체의 운동 상태를 해석하기 위하여 연직 기준 방향을 상방 또는 하방으로 임의 선택할 수가 있다.

REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS

  • Li, Zhouyu;Liu, Pan;Niu, Pengcheng
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1151-1164
    • /
    • 2020
  • The aim of this paper is to establish Liouville type results for the stationary MHD equations. In particular, we show that the velocity and magnetic field, belonging to some Lorentz spaces, must be zero. Moreover, we also obtain Liouville type theorem for the case of axially symmetric MHD equations. Our results generalize previous works by Schulz [14] and Seregin-Wang [18].

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

헬리콥터에서 발사되는 발사체의 궤적 예측 (Prediction of Trajectories of Projectiles Launched from Helicopters)

  • 공효준;곽인근;이승수;박재성
    • 한국항공우주학회지
    • /
    • 제42권3호
    • /
    • pp.213-220
    • /
    • 2014
  • 본 연구에서는 헬리콥터의 간섭유동장을 고려한 발사체의 궤적예측 프로그램을 개발하였다. 헬리콥터의 간섭유동장 해석에는 엑츄에이터 디스크 모델이 적용된 압축성 비점성 해석자를 이용하였다. 발사체의 궤적 해석에는 6자유도 운동방정식과 대안적 형태의 수정된 질점 운동방정식을 사용하였다. 헬리콥터 주위 유동 해석은 ROBIN(ROtor Body INteraction) 모델을 이용하여 검증하였다. Sierra International 탄과 105mm 포탄의 궤적을 이용해 운동 해석 모듈을 검증하였다. 헬리콥터에서 발사된 발사체의 궤적 예측에는 Sierra International 탄과 HYDRA 70 로켓을 이용하였다.

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

주기적으로 slot가 있는 도파관 복사계의 전자계해석 (Field Analysis of Periodically Slotted Waveguide Structures Excited by an Aperiodic Source)

  • Kim, Young-Cho
    • 대한전자공학회논문지
    • /
    • 제23권2호
    • /
    • pp.131-148
    • /
    • 1986
  • A field ploblem of a grounded dielectric slab covered by a conducting plane with periodecally spaced arbitrary number of slots excited by an aperiodis source is analyzed. The problem is formulated in terms of simultaneous integral equations for unknown electric fields at each slot. A sampling technique is introduced to reduce the system equations to a matrix equation equation involving Green's function matrix. The solution obtained in the form of infinite series is transformed, into a more rapidly convergent one in its final stage. Theoretical results agree closesly with the experimental results.

  • PDF

방정식(方程式)의 근사해(近似解) (Approximate Solutions of Equations in Chosun Mathematics)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제25권3호
    • /
    • pp.1-14
    • /
    • 2012
  • 구장산술이래 동양의 전통 수학은 유리수체를 기본으로 이루어져 있다. 따라서 방정식의 무리수해는 허용되지 않으므로 근사해를 구하는 방법은 방정식론에서 매우 중요한 과제가 되었다. 중국의 사료에 나타나는 근사해에 관한 역사를 먼저 기술하고, 이를 조선산학에 나타나는 근사해에 관한 사료와 비교한다. 조선의 근사해에 대한 이론은 박율(1621 - 1668) 의 산학원본 (算學原本) 과 조태구 (趙泰耉, 1660-1723) 의 주서관견(籌書管見)에 이미 정립되었다. 중국의 이론과 달리 두 산학자 모두 근사해의 오차에 관심을 가지고 더 좋은 근사해를 구하는 방법을 얻어내었음을 밝힌다.

THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY

  • Liu, Qiao
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.649-660
    • /
    • 2020
  • This paper proves a new regularity criterion for solutions to the Cauchy problem of the 3D Boussinesq equations via one directional derivative of the horizontal component of the velocity field (i.e., (∂iu1; ∂ju2; 0) where i, j ∈ {1, 2, 3}) in the framework of the anisotropic Lebesgue spaces. More precisely, for 0 < T < ∞, if $$\large{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_o}^T}({\HUGE\left\|{\small{\parallel}{\partial}_iu_1(t){\parallel}_{L^{\alpha}_{x_i}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}+}{\HUGE\left\|{\small{\parallel}{\partial}_iu_2(t){\parallel}_{L^{\alpha}_{x_j}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}})dt<{{\infty}},$$ where ${\frac{2}{{\gamma}}}+{\frac{1}{{\alpha}}}+{\frac{2}{{\beta}}}=m{\in}[1,{\frac{3}{2}})$ and ${\frac{3}{m}}{\leq}{\alpha}{\leq}{\beta}<{\frac{1}{m-1}}$, then the corresponding solution (u, θ) to the 3D Boussinesq equations is regular on [0, T]. Here, (i, ${\hat{i}}$, ${\tilde{i}}$) and (j, ${\hat{j}}$, ${\tilde{j}}$) belong to the permutation group on the set 𝕊3 := {1, 2, 3}. This result reveals that the horizontal component of the velocity field plays a dominant role in regularity theory of the Boussinesq equations.