• Title/Summary/Keyword: Fiber-orientation

Search Result 572, Processing Time 0.03 seconds

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

A study of structural analysis for plastic parts considering injection molding effects (성형효과를 고려한 플라스틱 사출품의 구조해석)

  • 박상현;김용환;김선우;이시호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

Effect of Washing and Subsequent Heat Treatment on Water Repellency of Silk Fabric Treated with Fluorocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Silk fabric treated with fluorocarbon resins (Asahi Guard AG-7005 and AG-E061) were washed and subsequently heat treated varying the washing cycles and the temperature. After the processing, the water and oil repellencies, and contact angle to water were evaluated. The water and oil repellencies decreased by the washing and recovered by following heat treatment. Also ESCA measurement was carried out to investigate the surface chemical composition of the treated fiber. The $F_1s$ intensity of the treated fabric decreased by the washing and recovered by the subsequent heat treatment. On the other hand, the $O_1s$ intensity increased by the washing and decreased by following heat treatment. From the results, it is clear that change of the water and oil repellencies of the silk fabric treated with fluorocarbon resin occurred by the washing and subsequent heat treatment. Considering a change of the water repellency of the silk fabric treated with fluorocarbon resin, it seems likely that the fluoroalkyl group of the fluorocarbon resin rotates from surface to inside of the fiber by the washing to adapt to the hydrophilic circumstance, and the orientation of the fluoroalkyl groups of the resin disturbed by the washing recovers the orientation to the fiber surface after the subsequent heat treatment.

On Characterization for Stacking Fault Evaluation of CF/Epoxy Composite Laminates Using an EMAT Ultrasonics (전자기 초음파를 이용한 CF/Epoxy 복합적층판의 적층결함 특성평가)

  • Im Kwanghee;Na Seungwoo;Hsu David K.;Lee Changro;Park Jewoung;Sim Jaeki;Yang Inyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.254-257
    • /
    • 2004
  • An electromagnetic acoustic transducers (EMAT) can usually generate or detect an ultrasonic wave into specimens across a small gap. Especially stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences there properties. It is very important to evaluate the layup errors in prepreg laminates. A nondestructive technique can therefore serve as a useful measurement for detecting layup errors. It was shown experimentally that this shear waves for detecting the presence of the errors is very sensitive. It is found that high probability shows between tests and the model developed in characterizing cured layups of the laminates. Also a C-scan method was used for detecting layup of the laminates because of extracting fiber orientation information from the ultrasonic reflection caused by structural imperfections in the laminates. Therefore, it was found that interface C-scan images show the fiber orientation information by using two-dimensional fast Fourier transform(2-D FFT).

  • PDF

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

A Study on the Design of Door Module PNL Using CAE and Inverse Compensation for Warpage (휨방지를 위한 CAE와 역보정을 이용한 Door Module PNL설계에 관한 연구)

  • Kim, Doo-Tae;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2018
  • Korea's automobile industry, which has grown rapidly to become the world's fifth-largest automobile producer, To cope with environmental pollution and energy problems in order to prevail competitive edge in global market We are investing a lot of research personnel and costs. Among them, for realizing alternative light weight It is a part of the automobile module system that has achieved the technological development before the breakthrough in the injection molding process in the press process. Door module PNL was the subject of research. The door module PNL is expected to cause warpage before the mold production due to the thin and flat product characteristics and fiber orientation characteristic of the material. In this paper, CAE analysis and reverse correction tool Design. CAE analysis to obtain the results of weld line position, bending position and deformation value Through the correction tool, think3, the original product was modified before the mold production to improve the completeness of the parts. In fiber orientation, the position and size of the cooling channel in the mold, the position and size of the gate, Temperature, pressure, time, and work environment. Compared with the result of CAE analysis, the product that was reverse-corrected by Think3 was manufactured, and injection molding was performed. Injection molding products were tested 24 hours later. 3.5 mm to 7.0 mm, and under the fixed condition, the deviation was from 1.1 mm to 1.5 mm. Unlike the CAE analysis, the deviation of the actual injection pressure and the cooling temperature, the fiber orientation of the material, In order to solve this problem, it is necessary to compare the injection conditions with the database, I knew I had to catch the standard.

Effect of Fiber Orientation on Ionic Conductivity of Electrospun Polyimide Nanofibers Mats (전기방사 폴리이미드 나노섬유매트의 섬유배향이 이온전도도에 미치는 영향)

  • Huh, Yang-Il;Kim, Young-Hee;Ahn, Jou-Hyeon;Lee, Hong-Ki;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.40-43
    • /
    • 2010
  • In this study, polyimide(PI) nanofibers mats were prepared by electrospinning and three different fiber morphologies of random, uniaxial, and biaxial orientation were prepared by controlling the speed of drum-shaped collector and other parameters. The SEM studies reveal that the aforesaid morphologies were obtained on the nano-fibrous mats prepared. The ionic conductivity was measured using an in-plane type conductivity tester for the PI mats soaked in the mixture of 1M lithium trifluoro-methane-sulfonate and tetra-ethylene glycol dimethyl ether. The ionic conductivity was surprisingly higher for the biaxial PI mats. For the uniaxially-oriented mats, the ionic conductivity was found to be higher in the parallel direction compared to the perpendicular direction of the fiber orientation. A curious cyclic fluctuation was found in the ionic conductivity with time. The observed behavior was explained by considering the distance between fibers and transport speed of ions used in this study.

The Effect of Paper Making Methods and Dochim of Handmade Korean Paper(Hanji) on the Strength (수록 한지의 초지방식과 도침이 강도적 성질에 미치는 영향)

  • Jeon, Cheol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.134-143
    • /
    • 2002
  • According to the result of the experiment, except that Oebal Hanji making, which does not consider the fiber orientation, has a smaller difference between its strength of width and length direction than of Ssangbal Hanii making, there is not a significant difference between Oebal Hanji making and Ssangbal Hanji making. In addition, even though Oebal Hanji making produced indigenous technique is generally felt sturdy because its absolute strength is enhanced by applying fine materials and overlaying several sheets of paper, its relative strength, which is expressed in an index, is not far beyond that of Ssangbal Hanji making Study on the effect of Dochim revealed that Dochim improves remarkably folding endurance and enhances breaking length and the burst strength. Especially, Dochim increase tensile strength. It was also revealed that, indigenous Oebal Hanji making, the higher the number of sheets of paper overlaid is, the higher the tear strength is the increase relatively higher than those of other types of strength. Consequently, Dochim treatment greatly reinforces the imperfect strength of indigenous Hanji. We consider that if we apply Dochim treatment to Ssangbal Hanji making it may bring about abnormal imbalance of strength. We can benefit from the characteristic strength of Oebal Hanji making only when performing paper making and Dochim considering fiber orientation.

Wear and friction characteristics of a carbon fiber composite against specular counterpart (탄소 섬유 복합재의 경면 상대재에 대한 마찰 및 마모 특성)

  • YANG BYEONG-CHUN;KOH SUNG-WI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.390-394
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite were selected. Wren sliding took place against smooth and hard counterpart, the highest wear resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

  • PDF

A Study on Characteristics Analysis of Low Velocity Impact Response of CF/Epoxy Composite Plates (CF/Epoxy 복합적층판의 저속충격 특성평가에 관한 연구)

  • 임광희;박노식;김영남;김정호;김선규;심재기;양인영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.85-88
    • /
    • 2002
  • We have implemented a system of falling weight impact tester. Absorbed energy of orthotropic composites with using T300 fiber, which are composed of the same fiber and stacking number is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of orthotropic composites with using T300 fiber, which are composed of stacking number and orientation became more than that of T700 fiber specimen; however great change doesn't show in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses was evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

  • PDF