• 제목/요약/키워드: Fiber-optic sensors

검색결과 290건 처리시간 0.021초

Applications of fiber optic sensors in civil engineering

  • Deng, Lu;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.577-596
    • /
    • 2007
  • Recent development of fiber optic sensor technology has provided an excellent choice for civil engineers for performance monitoring of civil infrastructures. Fiber optic sensors have the advantages of small dimensions, good resolution and accuracy, as well as excellent ability to transmit signal at long distances. They are also immune to electromagnetic and radio frequency interference and may incorporate a series of interrogated sensors multiplexed along a single fiber. These advantages make fiber optic sensors a better method than traditional damage detection methods and devices to some extent. This paper provides a review of recent developments in fiber optic sensor technology as well as some applications of fiber optic sensors to the performance monitoring of civil infrastructures such as buildings, bridges, pavements, dams, pipelines, tunnels, piles, etc. Existing problems of fiber optic sensors with their applications to civil structural performance monitoring are also discussed.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

구조물 유지관리용 간섭형 광섬유 센서 (Interferometric Optical Fiber Sensors for Health Monitoring Systems of Structures)

  • 김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.355-359
    • /
    • 1995
  • In this paper, the possibility of interferometric shows very good linearity to the strain. Fiber optic sensors have various merits for health monitoring systems. They are very small in diamerter. So, they don't give any disturbance in strength to the structures, Optical fiber sensors are innert to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the electro-magnetic field. Therefore, fiber optic sensors give us a good solution to the maintainance systems of the structures, which are exposed to the electric fields, such as bridges, dams and buildings.

  • PDF

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측 (Monitoring of Beam-Column Joint Using Optical Fiber Sensors)

  • 김기수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.595-601
    • /
    • 2003
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability und dominate tile strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

  • PDF

광섬유센서를 이용한 철도구조물의 모니터링 (Fiber Optic Smart Monitoring of Railway Structures)

  • 김기수;조성규;김명세;김학연;서기원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.754-760
    • /
    • 2008
  • For monitoring of railway structures, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of railway structures. We expect that the fiber optic sensors have much less noises than electrical strain gauges because of electro-magnetic immunity while railways operate electric power of 22000 volts. Fiber optic sensors showed good durability and long term stability for continuous monitoring of the railway structures as well as good response to the structural behaviors during construction.

  • PDF

SIMPLE EXTRINSIC FIBER OPTIC METHOD TO EVALUATE ABSORBANCE IN AQUEOUS NANOPARTICLE

  • ;;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1723-1726
    • /
    • 2008
  • In recent years, there has been a remarkable progress in the development of the fiber optic sensors for the detection of various chemicals. Fiber optic sensors have the advantages of very small size, flexibility and low cost. The fiber optic sensors employing different optical or spectroscopic phenomena have been reported such as bulk absorption, optical reflectance, fluoresces and energy transfer. In this study, the effect of nanoparticle concentration in liquid upon light absorption and scattering was studied using extrinsic fiber optic method. For the evaluation, we used Red (650 nm) and Blue (430 nm) light sources which are coupled through the standard cuvette using optical fiber to detector. The experiments are carried out with Polystyrene latex (400 - 800 nm), and Silicon (35 - 110 nm) nanoparticles suspended in Isopropanol. Differences in light absorption and scattering depending on nanoparticle concentration and type are discussed. This method may be useful to study nanoparticles properties for various application and research.

  • PDF

광섬유 센서를 이용한 첨단 구조계측 (Advanced Structural Monitoring System Using Fiber Optic Sensors)

  • 김기수;김종우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.717-723
    • /
    • 2002
  • Recently, the interest in safety assessment of civil infrastructures is increasing in Korea. Especially, as bridge structures become large-scale, it is necessary to monitor and maintain the safety state of bridges, which requires the monitoring system that can make a long-term measurement during the service time of bridge. In this paper, advanced fiber optic sensors for long-term measurement, setup techniques of bridge monitoring system and the assessment of measured data are introduced. Attached or embedded optical fiber sensors to structural members of small and big structures including Sung San Bridge are surveyed. For the Sung San Bridge, the responses of the fiber optic sensors by 30 ton weigh truck loads with various speeds ate measured. Monitoring system is also applied to the mock-up of bridges. The monitoring capability of the advanced fiber optic sensor system was confirmed.

  • PDF

첨단계측센서를 이용한 철도 구조물의 모니터링 (Railway structure health monitoring using innovative sensing technologies)

  • 이규완;정성훈;박은용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

PMMA가 코팅된 주름 구조를 갖는 다공성규소 격판을 이용한 광섬유 압력센서 (Fiber-Optic Pressure Sensor Using a Rugate-Structured Porous Silicon Diaphragm Coated with PMMA)

  • 이기원;조소연
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.227-232
    • /
    • 2013
  • In this research, fiber-optic pressure sensors were fabricated with rugate-structured porous silicon (RPS) diaphragms coated with PMMA (Polymethyl-Methacrylate). The reflectance spectrum of the PMMA/RPS diaphragm was almost the same as that of uncoated RPS diaphragm. However the mechanical strength of the PMMA/RPS diaphragm increased more than that of the uncoated diaphragm. As a result, the fiber-optic sensor fabricated with PMMA/RPS diaphragm could successfully detect more high pressure difference without diaphragm damage than the highest detectable pressure difference of the sensor with normal RPS diaphragm. The response data of the fiber-optic sensor recorded as a function of pressure difference were fitted by theoretical curves. During this process, elastic moduli of the used PMMA/RPS diaphragms were obtained numerically. The dynamic response properties of the fiber-optic sensor were also investigated under continuous variation of the pressure difference conditions.