• Title/Summary/Keyword: Fiber volume fractions

Search Result 102, Processing Time 0.027 seconds

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

A Study about Mechanical Properties of GFRP Laminates depending on Fiber Volume Fraction (섬유체적함유율의 영향에 따른 GFRP적층판의 기계적 특성에 관한 연구)

  • 국중석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • Domestic small and medium ship companies have lack of leisure boat technologies and especially they have a problem about its low performance because of the overweight of boat hull. So it is necessary to have alternative manufacturing process to improve the mechanical properties of composite material. In this study, a vacuum curing system was developed as an alternative manufacturing process and then changed the fiber volume fractions of GFRP laminates. The properties of GFRP laminates such as void contents, Young's modulus and fracture toughness were determined for various fiber volume fractions.

  • PDF

Spalling and Internal Temperature Distribution of High Strength Column Member with Polypropylene Fiber Volume Fractions (폴리프로필렌섬유 혼입률에 따른 고강도콘크리트 기둥부재의 폭렬 및 내부온도 분포특성)

  • Won, Jong-Pil;Jang, Chang-Il;Lee, Sang-Woo;Kim, Heung-Youl;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.821-826
    • /
    • 2008
  • This study evaluated spalling and internal temperature distribution after elevated temperatures test for high strength concrete ($f_{ck}=60\;MPa$) column member with various polypropylene fiber volume fractions. The ISO-834 time-temperature curve was used for measurement of fire resistance properties. As the result of test, average internal temperature results indicated to low temperature in increased polypropylene fiber volume fraction. But, the highest internal temperature results show that does not difference in proportion of polypropylene fiber volume fractions.

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.

Mechanical Properties of Permeable Polymer Concrete for Permeability Pavement with Recycled Aggregate and Fiber Volume Fraction (재생골재 및 섬유 혼입률에 따른 포장용 투수성 폴리머 콘크리트의 역학적 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood, and increase and purification of underwater resource. This study was performed to evaluate permeability, strengths and durability of permeable polymer concrete (PPC) using recycled aggregate that is obtained from waste concrete. Also, 6mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. In the test results, regardless of kinds of aggregates and fiber contents, the compressive strength and permeability coefficient of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. The weight reduction ratios for PPC after 300 cycles of freezing and thawing were in the range of 1.6~3.8 % and 2.2~5.6 %, respectively. The weight change ratio was very low regardless of the fiber volume fraction and aggregates. The weight reduction ratios of PPC with fiber and aggregate were in the range of 1.3~2.7 % and 2.2~3.2 % after 13 weeks and was very low regardless of the fiber volume fraction and aggregates.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Natural Frequency Characteristics of GFRP Pole Structures for Civil Structures with Different Fiber-Volume Fraction (모재-섬유 함침 비율에 따른 건설용 GFRP 기둥구조의 고유진동 특성)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of pole structures made of GFRP, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite poles for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Evaluation of Stress-Strain Relationship and Elastic Modulus Equation of Steel Fiber Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트의 응력-변형률 곡선 및 탄성계수 추정식 평가)

  • 장동일;손영현;조광현;김광일
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.13-20
    • /
    • 2000
  • In this study, the compression test of steel fiber reinforced high-strength concrete have been performed with varying strengths and volume factions of steel fiber. Three types of matrices including low strength concrete( c'=30 MPa), medium strength concrete( c'=50 MPa), and high strength concrete( c'=70 MPa) were selected. Five types of fiber fractions were studied including 0.0%, 0.5%, 0.75%, 1.0%, and 1.5% by volume. From the results of the compressive strength test, the post-peak characteristics of the stress-strain relationship were investigated, and the existing equations to predict the elastic modulus were experimentally evaluated.

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.