• Title/Summary/Keyword: Fiber surface engineering

Search Result 1,142, Processing Time 0.026 seconds

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

Thermal performance prediction of amorphous steel fibers mixed into the floor heating system (비정질 강섬유 혼입 바닥난방시스템의 열성능 평가)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • The thermal performance of amorphous steel fibers mixed floor heating system was evaluated. Analysis of results, depending on the hot water supply temperature changes, the average temperature of the bottom of the hot water supply temperature is an amorphous steel fiber floor heating system is about 2~4% higher. The average temperature of the floor surface to 1.5m air amorphous steel fiber system is 1~2% higher. The amount of heat supplied to indoor air (1.5m) from the bottom surface of amorphous steel fiber floor heating system is about 7~8% higher

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

A Study on the Physical Properties of Concrete with Three-dimensional Fiber Application (입체 섬유 적용 콘크리트의 물리적 특성에 관한 연구)

  • Jae-Min Lee;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.519-525
    • /
    • 2024
  • In this paper, a study on the physical properties of mortar applying 3D Textile was conducted to compensate for the shortcomings of the existing concrete surface repair and reinforcement method. In the tests conducted to analyze the physical properties, compressive strength, flexural strength, and dynamic modulus measurement tests were conducted. As a result of the compressive strength test, as the number of surfaces to which the stereoscopic fiber was applied increased, the amount of displacement and strength reduction rate increased, and the flexural strength also increased as the number of surfaces to which the stereoscopic fiber was applied increased. In addition, it was confirmed that the use of stereoscopic fibers tended to decrease the dynamic modulus of elasticity. This result is a characteristic of the application of stereoscopic fibers, and it caused a decrease in compressive strength due to a decrease in the mortar content of the part to which the stereoscopic fib er was applied, and the high tensile force of the stereoscopic fiber is believed to have affected the increase in flexural strength.

Effects of Electrochemical Oxidation of Carbon Fibers on Mechanical Interfacial Properties of Carbon Fibers-reinforced Polarized-Polypropylene Matrix Composites (전기화학적 산화처리가 탄소섬유/극성화된 폴리프로필렌 복합재의 기계적 계면 특성에 미치는 영향)

  • Kim, Hyun-Il;Choi, Woong-Ki;Oh, Sang-Yub;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.476-482
    • /
    • 2013
  • In this work, the effects of electrochemical oxidation of carbon fiber surfaces on mechanical interfacial properties of carbon fibers-reinforced polarized-polypropylene matrix composites were studied with various current densities during the treatments. Surface properties of the fibers before and after treatments were observed by SEM, AFM, XPS, and contact angle measurements. Mechanical interfacial properties of the composites were measured in terms of critical stress intensity factor ($K_{IC}$). From the results it was found that $O_{1s}$ peaks of the fiber surfaces were strengthened after electrochemical oxidation which led to the enhancement of surface free energy of the fiber, resulting in good mechanical performance of the composites. It can be concluded that electrochemical oxidation of the carbon fiber surfaces can control the interfacial adhesion between the carbon fibers and polarized-polypropylene in this composites system.

Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene (황마섬유 및 황마-폴리프로필렌 복합체의 특성에 미치는 플라즈마 처리영향)

  • Huh, Yang Il;Bismark, Mensah;Kim, Sungjin;Lee, Hong Ki;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.310-317
    • /
    • 2012
  • A jute fiber surface was modified with argon gas in a cylinder type RF plasma generator to enhance the interfacial bond strength and to optimize the plasma treatment condition. The plasma power, gas pressure, and treat time were varied to figure out any effect of those parameters on the morphology and mechanical strength of jute fibers, and the interfacial bond strength for a model composite with polypropylene resin. As the severity of plasma treatment was increased, the surface of jute fibers became rougher. Gas pressure was less effective in roughening of the surface compared with those of treat time and plasma power. Approximately 25% drop in tensile strength of jute fibers was observed for the parameters of treat time and plasma power, while little deterioration was found for gas pressure, with increasing the severity. Based on the interfacial shear strength (IFSS), the optimum plasma treatment condition was determined to be treat time of 30 s, plasma power of 40 W, and gas pressure of 30 mTorr.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Degradation analysis of SiC fiber at elevated temperature for dust filtering applications (분진필터링 적용을 위한 SiC 섬유의 고온 열화분석)

  • Joo, Young Jun;Park, Cheong Ho;Khishigbayar, Khos-Erdene;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • SiC fiber can be used up to $1800^{\circ}C$ in both inert and air atmosphere without any problems such as melting and oxidation. SiC fibers can be applied to dust filtering processes as a bag filter at a high temperature above $700^{\circ}C$, which is far beyond the temperature range of currently available industrial bag filter. However the studies for the degradation of SiC fibers were still lacked in the harsh environment of steel industries and thermoelectric power plants. In this study, SiC fibers were reacted with steel dust and thermal power plant dust at a high temperature of $500^{\circ}C$ or higher, and the degraded shape of the fiber surface was observed by SEM. Also the degree of oxygen diffusion on the surface and inside of SiC fiber was analyzed by EDS.

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.