• 제목/요약/키워드: Fiber reinforcement concrete

검색결과 692건 처리시간 0.042초

아라미드 섬유의 개질이 모르타르의 내충격 성능에 미치는 영향 검토 (A Study on the Impact Resistance of Concrete by Reinforcement Condition of Aramid Fiber)

  • 김태수;김규용;전영석;남정수;신경수;전중규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.219-220
    • /
    • 2011
  • The research is for building safety by using fiber reinforced concrete against impact load. The aim of this study is to evaluation of Impact Resistance of mortar by Reinforcement Condition of Aramid Fiber(fiber length, fiber surface treatment, fiber contents, hyrid reinforcement with steel fiber). Thus, the results indicate that it can improve mix condition and impact resistance by fiber surface treatment.

  • PDF

유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향 (Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement)

  • 권지은;권선민;채시현;정예담;김종원
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

탄소섬유시트로 보강된 철근콘크리트 구조물의 휨성능에 대한 이론 및 실험적 연구 (Theoretical and Experimental Investigations on the Flexural Behavior of RC members Strengthened with Carbon Fiber Sheets)

  • 장득훈;기영갑;도재문;박현정;조백순;박대효
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.521-526
    • /
    • 2001
  • The flexural behavior of a strengthened beam that is a reinforced concrete beam with externally bonded carbon fiber sheets, is theoretically and experimentally investigated. A rectangular beam having a width of 20cm depth of 30cm and effective depth of 25cm is chosen. In order to have a variety of beams analyzed, three reinforcement ratios are chosen for the analysis: 1)$\frac{1}{2}$$\rho$$_{max}$, which is the most suitable reinforcement ratio for deflection consideration and the highest reinforcement ratio for practical designing beams as well; 2)$\rho$$_{max}$, which is the lowest reinforcement ratio for design purposes; and 3)the reinforcement ratio halfway from 1) and 2). Carbon fiber sheets with width of 15cm are externally bonded at the bottom fiber of the beam. The effect of the amount of carbon fiber sheets varying from 1 to 4 plies on the flexural capacity of the strengthened beam are also examined. Yield loads, ultimate loads, and flexural rigidities of the strengthened beam from the experimental results are composed with theoretical ones.nes.

  • PDF

박막형 고강도 폴리머 및 열화원인별 적용 몰탈내에 섬유로드를 삽입하는 RC 구조물의 보강공법 연구 (Flexural Reinforcement of RC Structures with composite fiber rods inserted in high strength special purposed polymer mortar for various deteriorated conditions.)

  • 정원용;이상근;박홍진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.828-835
    • /
    • 2000
  • In recent years, RC structures need reinforcement due to physical and chemical deterioration, reduction of serviceability and structural capacity. For reinforcement of RC structures, steel plate attachment, area increase and composite fiber sheet attachment methods are used, but there are some problems like weight increase, workability, quality control and fire resistance capacity. This study presents the effectiveness of flexural reinforcement of RC beams using composite rods that are inserted in high strength special purposed polymer mortar.

  • PDF

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

섬유보강재 종류에 따른 무근콘크리트 균열저감 특성에 관한 연구 (Study on plain concrete crack reduction characteristics by fiber type)

  • 이지환;윤창연;박기홍
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.178-179
    • /
    • 2022
  • This study evaluated the crack reduction characteristics of concrete by type of fiber reinforced concrete. As a result of the experiment, it was shown that the fluidity decreased due to the mixing of the fiber reinforcing material. The higher the amount of fiber reinforced material used, the higher the decrease in fluidity. It was confirmed that the tensile strength was improved by the mixing of the fiber reinforcing material. The selection of fiber reinforcement has a great influence on the crack reduction effect.

  • PDF

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

CFRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 휨거동 (Flexural Behavior of Prestressed Concrete Beams with CFRP(Carbon Fiber Reinforced Plastic) Tendons)

  • 조병완;태기호;최용환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.639-644
    • /
    • 2000
  • Prestressing steels are susceptible to corrosion, which is considered the major reason in the deterioration of prestressed concrete structures. To solve this problem, many research have been made to utilize new type of tendons. FRP tendons have many advantages compared to steel tendons. However, FRP tendons have some disadvantages, such as no plastic behavior. This study focused on the flexural behavior of prestresssed concrete beams which is fabricated by post-tensioning method with CFRP (Carbon Fiber Reinforced Plastic) tendons. Th results drawn from the study, prestressed concrete beams with CFRP tendons have higher flexural cracking load, flexural yielding load, and flexural fracture load. While displacement at the fracture stage is lower compared to prestressed concrete beams with steel tendon. Excessive steel reinforcement lead lower ductility index. So, appropriate reinforcement guideline is needed. Further more, prestressed concrete beams with CFRP tendons can have sufficient ductility index when ruptured by crushing of concrete or used unbonded tendon. Therefore, the best design method for prestressed concrete beams with CFRP tendons is over-reinforcement, and use of unbonded tendon.

  • PDF

초고강도 강섬유 보강 콘크리트의 인장연화거동에 대한 크기효과 (Size Effect for Tension Softening Behavior of Ultra-Strength Steel Fiber Reinforcement Concrete)

  • 이시영;홍기남;김성욱;박정준;한상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.861-864
    • /
    • 2008
  • This study was performanced to investigate the fractural and fatigue behavior of ultra-strength steel fiber reinforcement concrete. The tension softening diagram can describe the post-cracking behavior of concrete in tension. In this paper, Three points bending tests with a notch have been carried out to investigate tensile properties of the steel fiber reinforced concrete(SFRC) according to variation of the height. Poly-linear approximation method combined with FEM analysis is applied to the steel fiber reinforced concrete to determine the tension softening diagrams and also to certify the validity of the method. The simulated load-CMOD curves using the determined softening diagrams though the poly-linear approximation method completely agree with the measured ones.

  • PDF

특수 가동된 셀룰로오스섬유보강 콘크리트의 휨성능 (Flexural Performance of Specialty Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.311-314
    • /
    • 1999
  • This study is aim to evaluate of the flexural performance of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15$\times$15$\times$55cm. The rate of loading was 0.006mm/min. The effects of differing fiber volume fraction(0.08%, 0.1%, 0.15%) were studied. The results of test on the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specially cellulose fiber reinforcement showed an improvement of flexural performance.

  • PDF