• Title/Summary/Keyword: Fiber optic SPR

Search Result 5, Processing Time 0.02 seconds

Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서 (A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism)

  • 윤성식;이수현;안종혁;이종현
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

Optimal Design of Fiber-optic Surface Plasmon Resonance Sensors

  • Jung, Jae-Hoon;Kim, Min-Wook
    • Journal of the Optical Society of Korea
    • /
    • 제11권2호
    • /
    • pp.55-58
    • /
    • 2007
  • We propose a systematic method for design of fiber-optic surface plasmon resonance (SPR) sensors. We used rigorous coupled wave analysis (RCWA) for analysis of the transmission spectrum, and the (1+1) evolution strategy (ES) was employed as an optimization tool. The simulation results show that the optimization method presented here is very useful in designing fiber-optic SPR sensor for strain and temperature measurement. This algorithm can be extended to another objective function with other weighting factors and optical parameters.

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF

광섬유 표면 플라즈몬 공명 센서를 이용한 스트레인 및 온도 측정 (Measurement of temperature and strain using fiber-optic surface plasmon resonance sensor)

  • 정재훈;김민욱
    • 전기전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.77-82
    • /
    • 2007
  • 본 논문에서는 광섬유 표면 플라즈몬 공명 센서를 이용하여 스트레인 및 온도 변화에 따른 센서를 제시하였다. 광섬유 센서의 구조는 광섬유의 클래딩 일부를 제거하여 크롬, 은, 금을 증착한 다층 박막 구조를 모델로 하였고, dip 파장의 변화가 선형성을 보임으로써 효율적인 센서로의 활용 가능성을 보이고자 한다.

  • PDF

회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩 (A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule)

  • 진영현;조영호
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.