• 제목/요약/키워드: Fiber nonlinearity

검색결과 88건 처리시간 0.029초

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Poling된 실리카 유리의 2차 비선형 광특성에 대한 전산모사 해석 (Computer Simulation Analysis on 2nd Order Optical Nonlinearity in Poled Silica Glass)

  • 이승규;유웅현;신동욱;정용재
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.230-231
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period time with metal blocking electrodes. In this research, a theoretical calculation of the nonlinear optical property caused by the space charge polarization is performed, and a model of a numerical analysis to predict the small change in nonlinear optical property as functions of time and space is provided.

  • PDF

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

섬유요소를 이용한 교량의 3차원 지진해석 (3D Nonlinear Seismic Analysis of a Bridge Using Fiber Element)

  • 조정래;곽임종;조창백;김병석;김영진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.141-146
    • /
    • 2002
  • In the present design concept, the nonlinear behavior of bridges is allowed under large earthquake. Therefore, demands for nonlinear analyses of bridges are increased more and more especially in the area of seismic assessment. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element Is adopted for model ins pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continuos bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is investigated. Second, the nonlinear dynamic analyses of the full bridge model is performed, considering 3 directional earthquake excitations.

  • PDF

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M.;Anbarasu, M.
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.523-533
    • /
    • 2021
  • The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.

파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정 (Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser)

  • 엄진섭
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

분산 보상 광섬유의 성능 지수에 따른 40 Gbps 광 펄스의 보상 특성 (Compensation Characteristics of 40 Gbps Optical Pulses Depending on Figure of Merit of Dispersion Compensating Fiber)

  • 이성렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.729-731
    • /
    • 2013
  • 축적된 분산(dispersion)과 비선형 효과에 의한 광 신호의 왜곡을 보상하기 위해 사용되는 분산 계수가 -125 ps/nm/km인 분산 보상 광섬유의 성능 지수 (figure of merit)에 따른 40 Gbps의 광 펄스의 보상 특성을 살펴보았다. 보상 특성이 광전송 링크를 구성하는 중계 구간 (fiber span)의 수가 많고 광 펄스의 입사 전력이 클수록 DCF의 성능 지수의 영향을 많이 받는 것을 확인할 수 있었다. 또한 광 펄스의 파장이 광섬유의 영 분산 파장으로부터 많이 벗어날수록 DCF의 성능 지수의 영향을 많이 받는 것을 확인하였다. 그러나 광전송 링크의 비선형 효과가 클수록 효과적인 보상을 위한 DCF의 성능 지수는 낮아져야 한다는 것을 동시에 확인하였다.

  • PDF

40 Gbps RZ Transmission Using Dispersion Compensation of Single-Span in Optical Transmission Links with Multi-Span of Single Mode Fiber

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.32-37
    • /
    • 2011
  • In dispersion management (DM) and optical phase conjugation applied into optical transmission links with multi fiber spans for minimizing the impact of nonlinearity and group velocity (GVD), implementation possibility of DM using only one fiber span for pre- or postcompensation was assessed as a function of duty cycle of RZ pulse and residual dispersion per span (RDPS). It is confirmed that DM with optimal net residual dispersion (NRD) controlled by only one fiber span could be sufficiently applied into optical transmission links, though optimal NRD is more increased than that in transmission links with the general DM scheme of pre- and postcompensation. Thus, it is expected that optical transmission system is simply designed and implemented by applying the proposed DM scheme into real optical transmission links. Also, it is confirmed that the advantageous duty cycle of RZ is 0.5 and RDPS is setting to be small value for the effective transmitting wide signal wavelength range in optical links with optimal NRD controlled by only one fiber span.

Modeling and Optimization of RMS Pulse Width for Transmission in Dispersive Nonlinear Fibers

  • Lee, Jong-Hyung
    • Journal of the Optical Society of Korea
    • /
    • 제7권4호
    • /
    • pp.258-263
    • /
    • 2003
  • Simple algebraic expressions are derived to approximate the optimal input RMS pulse width and the resulting output RMS pulse width in single-mode fibers. The results are compared with the previously published methods and with numerical results by the split-step Fourier method. In addition, for a transform-limited Gaussian input pulse, it is shown that there is no optimum input pulse width to minimize the output spectrum width. Finally, with fiber nonlinearity, it is shown mathematically that there is not an optimum input pulse width to minimize the product,${\sigma}_t{\sigma}_{\omega}$, which is inversely proportional to the transmission capacity of WDM systems.

기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석 (Geometric Nonlinear Analysis of Underground Laminated Composite Pipes)

  • 김덕현;이인원;변문주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1988
  • An analytical study was conducted using the Galerkin technique to determine the behaviour of thin fibre-reinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. We assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. And we also assumed that radial shear stress is negligible because the ratio of the thickness to the radius of pipe is very small. We, in this paper, discuss the effect of the number of layer, fiber orientation, and soil property.

  • PDF