• Title/Summary/Keyword: Fiber matrix interface

Search Result 160, Processing Time 0.021 seconds

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

A STUDY FOR THE BONDING STRENGTH OF COMPOSITE RESIN CORE TO GLASS FIBER POST (Glass Fiber Post와 Composite Resin Core의 전단결합강도)

  • Kim Tae-Hyoung;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.415-425
    • /
    • 2005
  • Statement of problem : Fracture of composite resin core will be occulted by progress of crack. Bonding interface of different materials has large possibility of starting point of crack line. Therefore, the bond strength of glass fiber post to composite resin core is important for prevention of fracture. Purpose: This in vitro study tried to find out how to get the higher strength of glass fiber post to composite resin core through surveying the maximum load that fractures the post and cote complex. Materials and methods: 40 specimens made with glass fiber Posts(Style $post^{(R)}$, Metalor, Swiss) and composite resin core ($Z-100^{(R)}$, 3M, USA) were prepared and loaded to failure with push-out type shear-bond strength test in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with four different surface treatments. With the data. ANOVA test was used to validate the significance between the test groups, and Bonferroni method was used to check if there is any significant statistical difference between each test group. Evely analysis was approved with 95% reliance. Results: On measuring the maximum fracture load of specimens, both the treatments of sandblasted and acid-etched one statistically showed the strength increase rather than the control group (p<0.005). The scanning electric microscope revealed that sand blasting made more micro-retention form not only on the resin matrix but on the glass fiber, and acid-etching contributed to increase in surface retention form, eliminated the inorganic particles in resin matrix. Specimen fracture modes investigation represented that sand blasted groups showed lower bonding failure than no-sand blasted groups. Conclusion: Referring to the values of maximum fracture load of specimens, the bonding strength was increased by sand blasting and acid-etching.

Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect (Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.305-310
    • /
    • 2021
  • Mechanical properties of fiber reinforced composites were affected to fiber volume fractions (FVF) and interfacial property by sizing agent conditions. An optimum interface can relieve stress concentration by transferring the mechanical stress from the matrix resin to the reinforcements effectively, and thus can result in the performance of the composites. The interfacial properties and wettability between the epoxy resin and glass fiber (GF) were evaluated for different sizing agent conditions and FVFs. The surface energies of epoxy resin and different sizing agent treated GFs were calculated using dynamic and static contact angle measurements. The work of adhesion, Wa was calculated by using surface energies of epoxy matrix and GFs. The wettability was evaluated via the GF tow capillary test. The interfacial shear strength (IFSS) was evaluated by microdroplet pull-out test. Finally, the optimized GFRP manufacturing conditions could be obtained by using wettability and interfacial property.

Interfacial Evaluation of Surface Treated Jute Fiber/Polypropylene Composites Before and After Hydration Using Micromechanical Test (미세역학적 시험법을 이용한 표면처리된 Jute 섬유 강화 폴리프로필렌 복합재료의 수화 전·후 계면물성 평가)

  • Kim, Pyung-Gee;Jang, Jung-Hoon;Park, Joung-Man;Hwang, Byung-Sun
    • Journal of Adhesion and Interface
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The interfacial evaluation of surface modified Jute fiber/polypropylene (PP) composites before and after hydration was investigated using micromechanical test and dynamic contact angle measurement. The IFSS of alkaline and silane-treated Jute fiber/PP composites increased, whereas after hydration, the IFSS of the untreated, alkaline- and silane-treated Jute fibers/PP composites decreased due to swelled fibrils by water infiltration. The interfacial adhesion of silane treated fiber/PP composites was higher than alkaline-treated or the untreated cases. The surface energies of Jute fiber treated under various conditions were obtained using dynamic contact angle measurement. Especially after hydration, the thermodynamic work of adhesion was calculated by considering water interlayer, which indicated the stability of IFSS between silane treated Jute fiber and PP matrix showing better than others.

  • PDF

Water Treatment Effect of Bamboo Fiber on the Mechanical Properties, Impact Strength, and Heat Deflection Temperature of Bamboo Fiber/PLA Biocomposites (대나무섬유/PLA 바이오복합재료의 기계적 특성, 충격강도 및 열변형온도에 미치는 대나무섬유 수처리의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.96-103
    • /
    • 2016
  • In this work, pellets consisting of cellulose-based natural fiber bamboo and poly(lactic acid) (PLA) was prepared by extrusion process and then bamboo fiber/PLA biocomposites with various fiber contents were produced by injection molding process. The water treatment effect of bamboo fibers on the flexural, tensile, and impact properties and heat deflection temperature of the biocomposites were investigated. The thermal stability of bamboo and the flexural properties, tensile modulus, and impact strength depended on the presence and absence of water treatment as well as on the fiber content, whereas the heat deflection temperature are influenced mainly by water treatment. The increase of the mechanical and impact properties of biocomposites is ascribed to the improvement of the interfacial adhesion between the bamboo fibers and the PLA matrix by the water treatment. The result suggests that the pre-treatment of natural fibers by using water, which is environment-friendly and labor-friendly, may contribute to enhancing the performance of biocomposites.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.

Fatigue Crack Growth Behavior of a Continuous Alumina Fiber Reinforced Metal Matrix Composite Materials (알루미나 장섬유 강화 복합금속재의 피로균열성장거동)

  • Doo Hwan, Kim;Lavernia, E.J.;Earthman, J.C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • The effects of heat treatment on fatigue crack growth behavior were studied in continuously reinfored, magnesium-based composite (FP/ZE41A). Following an earlier TEM investigation, specimens were thermally aged to modify the interfacial zone between the alumina fibers and mg alloy matrix. The fatigue crack growth experiments were conducted with specimens having the fiber orientation normal to the crack growth direction(longitudinal) and also specimens with the fibers oriented parallel to the crack growth direction(transverse). A comparision of the fatigue crack growth behavior indicates that aged longitudinal specimens are more resistant to fatigue crack growth than as-fabricated longitudinal specimens. Conversely, as-fabricated transverse specimens are more resistant to fatigue crack growth than aged transverse specimens. SEM observations of fiber pullout and ductile tearing on the fatigue fracture surfaces indicate that the aging weakens the strength of the fiber/matrix interface, giving rise to the observed fatigue crack growth behavior.

  • PDF

Historical Trends of Micromechanical Testing Methods for Structural Fiber Reinforced Composites to Evaluate the Interfacial Adhesion (구조용 섬유강화복합재료의 계면접착 특성 평가를 위한 미세역학시험법의 연구동향 고찰)

  • Park, Joung-Man;Kim, Jong-Hyun;Kim, Dong-Uk;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.59-69
    • /
    • 2022
  • In composite materials, the adhesion and interfacial properties were the most important factors to obtain high performance of mechanical properties. This review paper had been focused on the micromechanical evaluation methods for the interfacial property historically. The interfacial property of fiber-reinforced composites (FRC) could be evaluated using only a single fiber and matrix via various micromechanical testing methods. Self-sensing due to the fracture behavior of FRC could be determined and discussed more critically and clearly using electro-micromechanical evaluation. In this paper, the research trends for micro-mechanical evaluation of composites was summarized, and their practical applications would be suggested in the future.

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Polymer matrices for carbon fiber-reinforced polymer composites

  • Jin, Fan-Long;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.76-88
    • /
    • 2013
  • Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.