• Title/Summary/Keyword: Fiber matrix interface

Search Result 160, Processing Time 0.026 seconds

Microstructures and Tensile Properties of $A_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Pressing (Rheo-compocasting 및 Hot Pressing에 의하여 제조한 $Al-Si-Mg/Al_2O_3$ 단섬유강화 복합재료의 조직 및 인장특성)

  • Kwak, Hyun-Man;Lee, Hag-Ju
    • Journal of Korea Foundry Society
    • /
    • v.13 no.6
    • /
    • pp.547-554
    • /
    • 1993
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by rheo-compocasting accompanied by hot pressing. When composites reinforced with fibers are produced by rheo-compocasting, S-L process is the most effective method for homogeneous dispersion of fibers. A sound composites with the improved orientation(3 dimension${\rightarrow}$2 dimension) of the fibers and increased volume fraction of them have been fabricated through the hot pressing of the casted composites. Fibers are broken down when rheo-compocasting, hot pressing, and $T_6$ treating. Among them fibers are broken down most heavily in the hot pressing. And even in the case of the composite reinforced with 30 vol% fibers, which showed the hardest fiber break down, aspect ratio(11.6) is higher than critical aspect ratio(10.7). The fiber strengthening effect in the composites has showed upto 573K. As the test temperature increases to the range of 573K, the effect has been higher. The fracture of composites is controlled by fiber from room temperature to 473K, but the fracture of composites is controlled by interface between fiber and matrix alloy above 473K.

  • PDF

Volume Integral Equation Method for Multiple Anisotropic Inclusion Problems in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 이방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple anisotropic inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of anisotropic inclusions and various fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy of the method is validated by solving the single inclusion problem for which solutions are available in the literature.

Mechanical Properties of Natural Fiber Composites by Co-polymerized Thermoplastics (공중합된 열가소성 수지에 의한 자연섬유 복합재의 기계적 물성에 관한 연구)

  • Lee, Jung-Hoon;Hwang, Byung-Sun;Byun, Joon-Hyung;Kim, Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.116-120
    • /
    • 2005
  • In this study, composites with polypropylene(PP) and Jute fiber were prepared by compression molding technique. Generally, hydrophilic jute fibers do not adhere well to PP, which is hydrophobic. Maleic anhydride grafted polypropylene(MAPP) had been widely used as a coupling agent to improve the bonding between ligno-cellulosic fibers and PP. The coupling agent improved the tensile and flexural properties when the mechanical properties were tested by using a UTM. The mechanical properties of natural fiber composites(NFCs) by modified thermoplastics were higher than those of NFCs by unmodified thermoplastics. Fracture surfaces of the composites and the fiber orientations were investigated by scanning electron microscopy. The mechanical performance of NFCs by modified thermoplastics appeared to be improved by the enhanced interface adhesion between the fiber and the matrix.

  • PDF

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

Material Properties and Strengthening Mechanism in Shape Memory TiNi Fiber Reinforced Al Matrix composite (TiNi/Al 형상기억 지적복합재료의 기계적 특성 및 강화기구)

  • Park, Yeong-Cheol;Yun, Du-Pyo;Lee, Gyu-Chang;Huruya, Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.405-413
    • /
    • 1997
  • In the present paper, it is attempted to reconfirm the "Intelligent" material properties using both the sintered TiNi/Al(1100) matrix composite made by powder metallurgy method and the squeeze-casted TiNi/Al6061 specimens. A metal matrix composite is, its fault has been considered to deteriorate a strength of composite by heating residual stress of the matrix. Therefore, it is necessary to remove a tensile residual stress, to produce the strength of a composite better. On the contrary, if compressive residual stress happens in matrix of composite in place of tensile residual stress, it will make the strength of composite better. So that, this paper introduce the development of a high strength of composite, by using compressive residual stress well, on the study. By using these specimens, shape memory strengthening effects in tensile strength and fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. We occurs the prestrain and volume fraction for to discuss the effects of a composite strength. Moreover, by SEM observation, the effect of the residual stress at the interface between Al matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was discussed metallurgically.urgically.

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber (비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Choe, Gyeong-Cheol;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.

Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy (TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발)

  • 이동화;박영철;박동성;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

분말야금법을 이용한 Ti-Ni 섬유강화 형상기억복합재료 특성에 관한 연구

  • 박민식;윤두표;박영철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.738-742
    • /
    • 1996
  • In the present paper, We have tried to reconfirm the "Interlligent" material properties using both the sintered TiNi/A(1100) matrix composite by powder metallurgy method. By using these specimen, Shape meorystrengthening effect in tensile strengthand fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. More over, by SEM obsevation, the effect of the residual stress at the interface between A1 matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was metallurgically discussed.discussed.

  • PDF

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.