• Title/Summary/Keyword: Fiber mat

Search Result 143, Processing Time 0.028 seconds

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

A Study on the Compression Moldablity for Continuous Fiber-Reinforced Polymeric Composites ―Part 1 : The Mechanical Propertis and the Cup-type Compression Moldability for Numbers of Needling― (연속섬유강화 플라스틱 복합재료의 압축성형에 관한 연구 -제I보 : 니들펀칭횟수에 따른 물성치 및 컵형 압축성형성-)

  • 오영준;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • Glass-fiber reinforced polymeric composites provide the desitable properties of high stiffness and strength as well as specific weight. Hence, they have become some of the most important materials in several industries. These composites can be grouped into thermoplastic and thermoset composites, with thermoplastic composites having several advantages over thermoset composites in mechanical properties and processing. As a result, the study of the material behavior and forming techniques of such composites has attracted considerable attention in recent years. When the continuous fiber-reinforced polymeric composites are molded by flow molding, the molded parts leads to be nonhomogeneity and anisotropic because of the separation and orientation of fibers. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relarion to molding conditions, fiber mat structures and mold geometry. In this study, the effects of the mold geometry and the fiber mat structure on the compression moldability are studied using the cup-type molding.

  • PDF

Processing and Mode 1 Fracture Toughness of Carbon Fiber Composites Reinforced With Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조 공정과 모드 1 파괴인성)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.39-43
    • /
    • 2011
  • For the last twenty years, nanocomposites composed of polymer matrices reinforced with carbon nanotubes (CNTs) have been an active research area. Also, the polymeric nanocomposites reinforced with CNTs are being investigated to be used matrices of carbon fiber composites. Carbon tiber composites have achieved advanced properties in the direction of carbon fibers due to enhanced carbon fiber properties. However, the matrix dominated properties need to be improved further to fully utilize the advanced carbon fiber properties. In particular, delamination is a typical and critical reason for fracture of carbon fiber composites. Mode I fracture toughness test which is also often called double cantilever beam (DCB) test shows the resistance to delamination of carbon fiber composites and this test is performed on carbon fiber composite samples incorporated with carbon nanotubes functionalized with various functional groups. The specimens with mat-like CNT layers showed the increased fracture toughness by 10.6%.

An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding (2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구)

  • Kim, Ik Tai
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • It has made a special study of bending behavior of F.R.P. sandwich beams with bonded 2nd-reinforced plies. Specimen's faces were made of chopped mat 300-450, roving clothes 570, core is urethane foam, resin is 713bp unsaturated polyester for ship construction and the mixture weight ratio of resin versus fiber was 55:45 for bending analysis. The purpose of this paper is to study the exact bending behavior of bonded area's deflection and stiffness depends upon various bonded F.R.P. (2nd reinforced ply) length and thickness on which covered joints and to find the optimum design for the sandwich structures. All results and suggestions are based on experiment and using thick face calculation.

A Study For The Simple Method In Dividing The Layers of Fiber-reinforced Plastic (폐 FRP선박의 재활용공정에서 용이한 면포추출공정을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • As one of the methods for recycling the FRP used for the small and medium-sized waste ships, separation of the roving layer from the mat has some merit in a sense of the recycling energy and the environmental effects. Similar characteristics between the roving and the mat make the mechanically automatic differentiation difficult. They, however, contain different ratio of the resin and the glass and the thickness. In this study photo physical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer and (2) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring the FRP sample with water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The implementation of HF treatment has been successfully tested in this study.

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.

Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VARTM (VARTM 공정에서 수지 함침에 따른 섬유체적율 변화의 측정 및 현상학적 모델링 연구)

  • Kim, Shin O;Seong, Dong Gi;Um, Moon Kwang;Choi, Jin Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.340-347
    • /
    • 2015
  • As resin impregnates through the fiber preform in vacuum assisted resin transfer molding process, the volume of fibers is changed by expansion of fiber mat according to filling time. It causes not only the change in dimension but also the decrease of mechanical properties of the composite product. Moreover, it results in the economic loss by increase of the used amount of resin especially in the large product such as wind turbine blade. In this study, the ways to control fiber volume fraction were investigated by both the experimental and theoretical analyses on the expansion of fiber preform as the preform was impregnated by resin in the VARTM process. Two kinds of swelling stage were observed as flow front progressed, which was analyzed by comparing the experimental and simulation results. The process parameters are expected to be optimized by investigating the swelling behavior of fiber preform in the manufacturing process of the composite product.

Construction Management Method for Asphalt Paving Using Ground Penetrating Radar and an Infrared Camera (지표투과레이더와 적외선카메라를 이용한 아스팔트 포장 시공 관리 방법)

  • Baek, Jongeun;Park, Hee Mun;Yoo, Pyung Jun;Im, Jae Kyu
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS : A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS : From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from $10^{\circ}C$ to $30^{\circ}C$ in the two test sections. CONCLUSIONS : During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

Optimization of safety factor by adaptive simulated annealing of composite laminate at low-velocity impact

  • Sidamar, Lamsadfa;Said, Zirmi;Said, Mamouri
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • Laminated composite plates are utilized extensively in different fields of construction and industry thanks to their advantages such as high stiffness-to-weight ratio. Additionally, they are characterized by their directional properties that permit the designer to optimize their stiffness for specific applications. This paper presents a numerical analysis and optimization study of plates made of composite subjected to low velocity impact. The main aim is to identify the optimum fiber orientations of the composite plates that resist low velocity impact load. First, a three-dimensional finite element model is built using LS DYNA computer software package to perform the impact analyses. The composite plate has been modeled using solid elements. The failure criteria of Tsai-Wu's criterion have been used to control the strength of the composite material. A good agreement has been found between the predicted numerical results and experimental results in the literature which validate the finite element model. Then, an Adaptive Simulated Annealing (ASA) has been used to optimize the response of impacted composite laminate where its objective is to maximize the safety factor by varying the ply angles. The results show that the ASA is robust in the sense that it is capable of predicting the best optimal designs.