• Title/Summary/Keyword: Fiber angle

Search Result 678, Processing Time 0.022 seconds

Estimation of Spatial Variations in a Light Source by Optical Fiber Sensory System (광섬유를 이용한 광원 위치의 미세 변위 추정)

  • Kim, Ji-Sun;Jung, Gu-In;Lee, Tae-Hee;Choi, Ju-Hyeon;Oh, Han-Byeol;Kim, A-Hee;Park, Hee-Jung;Kim, Kyung-Seop;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1283-1289
    • /
    • 2013
  • The purpose of this study is to find the new method for estiming the spatial variations in a light source with utilizing the optical fiber sensory system. With this aim, firstly the asymmetry in the beam profile of a light source is evaluated by using the tipped optical fiber with 0, 10, 20, 30, 40, 45-degree angle. Secondly the variation of position in a light source is estimated by adjusting the relative position between the light source unit (XYZ stage, LED, Optical fiber) and the receiver unit (Photodiode, XYZ stage). Our experimental results show that the spatial variation of a light source can be resolved in terms of the variations in beam profile with varying the tip angle of an optical fiber and adjusting the relative distance between the light source unit and the receiver.

Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composites (사이징제에 따른 유리섬유/불포화 폴리에스터 복합재료의 계면 접착력과 기계적 물성)

  • 박수진;김택진;이재락;홍성권;김영근
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.326-332
    • /
    • 2000
  • The effects of sizing agent on the final mechanical properties of the glass fiber/unsaturated polyester composites were investigated by contact angle measurements at room temperature. In this work, glass fibers were coated by poly(vinyl alcohol), polyester, and epoxy type sizing agent and each property was compared. Contact angles of the sized glass fiber were measured by the wicking method based on Washburn equation using deionized water and diiodomethane as testing liquids. As an experimental result, the surface free energy calculated from contact angle showed the highest value in case of the glass fiber coated by epoxy sizing agent. From measurements of interlaminar shear strength (ILSS) and fracture toughness ( $K_{IC}$ ) of the composites, it was found that the sizing treatment on fibers could improve the fiber/matrix interfacial adhesion, resulting in growing the final mechanical properties. This was due to the enhanced surface free energy of glass fibers in a composite system.

  • PDF

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

A Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP (FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구)

  • Kim J. W.;Lee D. G.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.252-257
    • /
    • 2005
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation' orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

  • PDF

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.

Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups

  • Qissab, Musab Aied;Salman, Mohammed Munqith
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.347-358
    • /
    • 2018
  • The main aim of this research was to investigate the shear strength of non-prismatic steel fiber reinforced concrete beams under monotonic loading considering different parameters. Experimental program included tests on fifteen non-prismatic reinforced concrete beams divided into three groups. For the first and the second groups, different parameters were taken into consideration which are: steel fibers content, shear span to minimum depth ratio ($a/d_{min}$) and tapering angle (${\alpha}$). The third group was designed mainly to optimize the geometry of the non-prismatic concrete beams with the same concrete volume while the steel fiber ratio and the shear span were left constant in this group. The presence of steel fibers in concrete led to an increase in the load-carrying capacity in a range of 10.25%-103%. Also, the energy absorption capacity was increased due to the addition of steel fibers in a range of 18.17%-993.18% and the failure mode was changed from brittle to ductile. Tapering angle had a clear effect on the shear strength of test specimens. The increase in tapering angle from ($7^{\circ}$) to ($12^{\circ}$) caused an increase in the ultimate shear capacity for the test specimens. The maximum increase in ultimate load was 45.49%. The addition of steel fibers had a significant impact on the post-cracking behavior of the test specimens. Empirical equation for shear strength prediction at cracking limit state was proposed. The predicted cracking shear strength was in good agreement with the experimental findings.

Convergence Study on Durability Improvement due to Radius of Arch Type at CFRP Structure with Stacking Angle (적층각도를 가진 CFRP구조물에서의 아치형 반경에 따른 내구성 개선에 대한 융합 연구)

  • Hwang, Gue-wan;Cho, Jae-ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.219-224
    • /
    • 2017
  • This paper investigates equivalent stress and deformation happening at inner fiber structure when the tensile force acts on the specimen with arch type composed of carbon fiber. The countless many each fiber is applied on the unidirectional axis at CFRP and has the high specific strength and stiffness by comparing with iron. In this study, the distribution of stress due to radius is investigated at the structure of arch type composed with the optimum stacking angle of $60^{\circ}$. And the durability is seen to be lower as the radius increases at the same stacking angle. By applying the result of this study to the design of structure with arch type, it can be devoted to the safe design for the prevention of damage and the durabilty improvement. And it is possible to be grafted onto the convergence technique at the designed factor and show the esthetic sense.

A Study on Angle Measurements Using an Optical Fiber (광섬유를 이용한 각도 측정 연구)

  • Kim, A-Hee;Kim, Ji-Sun;Oh, Han-Byeol;Kim, Jun-Sik;Goh, Bong-Jun;Lee, Eun-Suk;Jung, Hyon-Chel;Choi, Ju-Hyeon;Baek, Jin-Young;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.605-611
    • /
    • 2015
  • The measurement and analysis of angular change have been studied in many fields. This study developed an angle measurement technique with optical fiber and photodiode. The position and attached angle of photodiode were investigated to find the proper combination of parameter. The results showed that the increased measuring range was achieved when the position of detector was away from the center of rotation. Inverse mathematical model was used to obtain angular changes with an optical fiber. The applications of this study include in optical sensor, joint angle measurement, and sport science.