• Title/Summary/Keyword: Fiber Reinforced Plastic(FRP)

Search Result 177, Processing Time 0.028 seconds

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.

The study on DC FRP support insulator wind tunnel test (직류용 FRP 지지애자 시작품 풍압시험에 대한 고찰)

  • Sim, Jae-Suk;Kin, Yoon-Sik;Jung, Ho-Sung;Cho, Ho-Ryung;Lee, Sang-Sik;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.46-49
    • /
    • 2010
  • Fiber Reinforced Plastic (FRP) insulator has a higher performance than porcelain. It is only used in domestic AC 25 kV electric railway system. Seoul Metro has developed DC 1500 V FRP insulator since 2008. FRP support insulator of flexible property is affected by the wind in tunnel. A wind tunnel test was carried out to measure influence on the insulator housing when the train passed by. The test results showed that the wind which is resulted from the passing train had a little impact on the FRP insulator shed movements.

  • PDF

Improvement of Flexural Capacity of Reinforced Concrete Beams Retrofitted by CFS (CFS로 보강된 철근콘크리트 보의 휨내력향상효과에 관한 연구)

  • Lee, Yong Taeg;Lee, Li Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.203-211
    • /
    • 1999
  • This study is to examine the feasibility of carbon fiber sheet(CFS), a kind of fiber reinforced plastic(FRP), for a repair and reinforcement of R/C beams. The flexural strength of R/C beams, that were preloaded and then the cracks were repaired, maintains that of the uncracked R/C beams. The flexural strength of R/C beams increases with the reinforcement of CFS. In order to practically apply the repair and reinforcement method, further research is needed for the distribution, amount, and bond of CFS. In this study, an experiment was conducted for R/C beams reinforced with CFS, for various wrapping method and amounts of CFS. Experimental results showed the wrapping method increasing the bond area and amount of CFS layer caused the increase in the strength of the beams. It is found that the strength of CFS should be used as 70% of the maximum strength in retrofitting reinforced concrete beams in evaluating flexural capacity on the basis of ultimate strength design method.

  • PDF

A Study For The Simple Method In Dividing The Layers of Fiber-reinforced Plastic (폐 FRP선박의 재활용공정에서 용이한 면포추출공정을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • As one of the methods for recycling the FRP used for the small and medium-sized waste ships, separation of the roving layer from the mat has some merit in a sense of the recycling energy and the environmental effects. Similar characteristics between the roving and the mat make the mechanically automatic differentiation difficult. They, however, contain different ratio of the resin and the glass and the thickness. In this study photo physical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer and (2) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring the FRP sample with water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The implementation of HF treatment has been successfully tested in this study.

Delamination Detection of FRP Sheet Reinforced Concrete Using Microstrip Patch Antenna (Microstrip Patch Antenna를 이용한 탄소섬유시트 보강콘크리트의 박리 탐사)

  • Rhim, Hong-Chul;Lee, Hyo-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • A series of experimental work has been conducted to evaluate the capability of microstrip patch antenna system in detecting delamination in fiber reinforced Plastic (FRP) sheet reinforced concrete. For that purpose, a prototype microstrip patch antenna was developed with 15 GHz center frequency and 1 GHz bandwidth. For the comparison, a horn antenna with 15 GHz center frequency and 10 GHz bandwidth was used for the measurements of the same specimens. The laboratory sire specimens have the dimensions of 600 mm (length) $\times$ 600 mm (width) $\times$ 50mm (thickness) with a series of delaminations of 300 mm (length) $\times$ 300mm (width) $\times$ 5, 10, 15 mm (thickness). FRP of 1.5 mm thickness and epoxy of 3 mm thickness were placed on the top of artificially created delamination to represent actual FRP reinforced concrete condition. In all cases, the delamination has deen successfully identified. Also, it was shown that imaging results in microstrip patch antenna were improved by signal processing.

Development of New Detachable Connection for Glass Fiber Reinforced Polymer Considering of Short and Long-Term Behavior

  • Park, Don-U;Hwang, Kyung-Ju;Knippers, Jan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.141-151
    • /
    • 2007
  • The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.

  • PDF

A Study on the Mechanical Characteristics of Ho1low Type Glass Fiber Reinforced Plastics Re-bar (중공형 GFRP리바의 기계적 특성에 관한 연구)

  • 한길영;이동기;오환교;홍석주;신용욱;배시연
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.7-11
    • /
    • 2000
  • In this paper was studied on the mechanical characteristics of Glass Fiber Reinforced Plastics(GFRP) of the steel bar it is to replace. The advantage of FRP such as high strength, low weight and chemical inertness or noncorrosiveness can be fully exploited. GFRP bar were successfully fabricated at l0mm nominal diameters of solid and hollow types using a pultrusion method. Tensile and bending specimens from this bar were tested and compared with behavior of GFRP rebar and steel bar.

  • PDF

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Development of Glass Fiber Composite Material to Extend the Life of Fly Ash Transport Pipe: Wear Test (비회 운송관의 수명연장을 위한 유리섬유 복합재의 개발: 내마모성 평가)

  • Jeong, Gyu-Sang;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • In this study, a fiber reinforced plastic (FRP) pipe with superior wear resistance was developed to replace the fly ash pipe of cast iron. Wear test was performed with various combinations of SiC filler and resin materials of unsaturated polyester, vinylester, epoxy, and phenol. Test results of ASTM D4060 showed the optimal combinations of resin, filler size, and resin/filler ratios. Test results of comparison between FRP and cast iron showed the possibility to replace cast iron pipe with the FRP pipe. Field test executed to compare the wear resistance between cast iron pipe and developed FRP pipe showed the superiority of the FRP pipe.