• 제목/요약/키워드: Fiber Glass Reinforced Plastics

검색결과 109건 처리시간 0.022초

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

복합재료의 직교 절삭가공 특성에 관한 연구 (A study on the orthogonal cutting characteristics of glass fiber reinforced plastics)

  • 송화용;정용운;김준현;김주현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.155-160
    • /
    • 2001
  • In the use of glass fiber reinforced plastics(GFRP) it is often necessary to cut the components, but the cutting of GFRP is often made difficult by the delamination of the compositions and short tool life. Experimental investigation was conducted to evaluate the chip formation of the glass fiber reinforced plastics during orthogonal cutting. The chip formation process, cutting force, and thrust force were studied. The chip formation processes were studied through the use of quick-stop device. Chip-tool contact areas were obtained with the use of the quick-stop device, and observed using optical microscopy after polishing. Cutting force and thrust force were measured through the use of the tool dynamometer.

  • PDF

유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구 (A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type)

  • 안상욱;노상래
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

나일론66에서 유리섬유의 종류 및 애향에 따른 기계적 물성 연구 (A study on the mechanical properties of reinforced Nylon66 for glass fiber type and its orientation)

  • 유종범;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.374-377
    • /
    • 2009
  • Glass fiber reinforced nylon has been used in many plastic industries. Mechanical properties of reinforced plastics depend upon types of glass fiber as well as loading of glass fiber. Tensile properties of glass fiber reinforced nylon66 have been studied for different glass fiber types and sizes. Types of glass fibers were circular and flat, and diameters were 7, 10, and 13 micrometers. Orientations of glass fibers in the matrix of nylon66 have been analyzed through X-ray CT. Tensile specimens were prepared by cutting out of square plates of $100{\times}100{\times}3mm$ with different angles such as 0, 45, and $90^{\circ}$ to the flow direction. As the loading of glass fiber increases to 45 wt% tensile strength increases up 2.5 times compare with neat nylon66. Anisotropic tensile strength has been observed and minimum tensile strength was measured in the specimen cut from perpendicular to the flow direction.

  • PDF

FRP로 보강된 RC보의 전단보강효과 비교연구 (A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP)

  • 심종성;김규선
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.101-111
    • /
    • 1998
  • 본 논문의 목적은 전단내력이 부족한 R/C보에 CFS(Carbon Fiber Sheets), CFRP(Carbon Fiber Reinforced Plastic), GFRP(Glass Fiber Reinforced Plastics)를 이용해 전단보강을 할 경우에 보의 역학적 거동특성을 규명하기 위한 것이다. 본 논문의 목적을 달성하기 위하여 총 19개의 시험체가 제작되었으며, 실험변수로는 전단스팬비, 보강재료, 보강방법, 보강간격 및 방향을 산정하였다. 본 논문의 실험결과, FRP를 이용해 전단내력이 부족한 R/C보에 보강을 하였을 경우 약 50~70%정도의 보강효과를 나타내었다. 또한 소성이론에 근거한 철근콘크리트보의 전단강도 예측모델을 개발하였고 실험치와의 비교를 통해 개발된 모델의 적합성을 검증하였다.

섬유강화 복합재료의 가공시 강화재가 공구마모에 미치는 영향 (The effects of reinforcements on the tool wear during cutting fiber-reinforced plastics)

  • 정용운;김주현;박주승;좌성훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.208-212
    • /
    • 1999
  • In the use of glass fiber reinforced plastics(GFRP), cutting is often necessary. But the most of past studies have been interested in the effect of fiber orientation on tool wear. In this study, the effects of fiber contents on tool wear were investigated experimentally. By proper selection of cutting tool, the variables are cutting speed and fiber contents of 10, 20, 30wt% with fixed feed rate and depth of cut.

  • PDF

중공형 GFRP리바의 기계적 특성에 관한 연구 (A Study on the Mechanical Characteristics of Ho1low Type Glass Fiber Reinforced Plastics Re-bar)

  • 한길영;이동기;오환교;홍석주;신용욱;배시연
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.7-11
    • /
    • 2000
  • In this paper was studied on the mechanical characteristics of Glass Fiber Reinforced Plastics(GFRP) of the steel bar it is to replace. The advantage of FRP such as high strength, low weight and chemical inertness or noncorrosiveness can be fully exploited. GFRP bar were successfully fabricated at l0mm nominal diameters of solid and hollow types using a pultrusion method. Tensile and bending specimens from this bar were tested and compared with behavior of GFRP rebar and steel bar.

  • PDF

성형효과를 고려한 플라스틱 사출품의 구조해석 (A study of structural analysis for plastic parts considering injection molding effects)

  • 박상현;김용환;김선우;이시호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

섬유강화복합재의 Tribological 특성에 관한 연구 (Tribological Characteristics of Fiber-Reinforced Plastics(FRP))

  • 성인하;여인완;김대은
    • Tribology and Lubricants
    • /
    • 제12권1호
    • /
    • pp.6-14
    • /
    • 1996
  • Experimental investigation on the tribological behavior of fiber-reinforced plastics(FRP) has been studied. It is shown that the frictional behavior of carbon FRP depends on the fiber-orientation while glass FRP does not. The friction coefficient values for carbon FRP were about 0.8, 0.3, and 0.2 for normal, 45$^{\circ}$ and 0$^{\circ}$ sliding directions respectively. Also, the applied load was found to affect the friction coefficient. In the case of this work, 50 gf resulted in the highest value while 200 gf resulted in the lowest value. The friction coefficients for higher loads fell in between the two extreme values.

브레이드 투루젼법에 의한 콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 개발 (Development of Hybrid Fiber Reinforced Plastics Rebar for Concrete Structure by the Braidtrusion Process)

  • 최명선;한길영;이동기;심재기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.199-205
    • /
    • 2001
  • This paper describes the design methodology, manufacturing process, rebar tensile and bending properties. Braidtrusion is a direct Composite fabrication technique utilizing an in-line braiding and pultrusion process. The produced Composite rebar exhibits ductile stress-strain behavior similar to that of conventional steel bar. Various rebar diameters ranging from modeling scale(3m) to full-scale prototype of 9.5mm have been produced Glass Fiber Reinforced Plastics(GFRP) rebar were successfully fabricated at $\phi$8.5mm and $\phi$9.5mm nominal diameters of soild and hollow type using a braidtrusion process. Tensile and bending specimens were tested and compared with behavior of stress-strain of GFRP rebar and steel bar.

  • PDF