• 제목/요약/키워드: Fiber Diameter

검색결과 791건 처리시간 0.027초

전기방사를 이용한 PLA/CNC 복합 매트의 기초 특성 (Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats)

  • 조유정;이선영;전상진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.518-527
    • /
    • 2015
  • 본 연구에서는 바이오 매스기반의 셀룰로오스 나노크리스탈(cellulose nanocrystals, 이하 CNC)과 PLA (polylactic acid, 이하 PLA)를 tetrahydrofuran (THF)에 용해시킨 서스펜션으로부터 PLA 및 PLA/CNC 나노섬유 복합재 매트를 상온에서 전기방사법으로 제작하였다. PLA 및 PLA/CNC 나노복합재 매트의 형상은 섬유가 긴축을 따라 3차원 구조의 표면으로 정렬된 것으로 관찰되었다. PLA 및 PLA/CNC 나노섬유 복합재 매트의 인장강도는 CNC 함량이 증가할수록 감소하였는데, 이는 전기방사된 섬유 속에 형성된 비드와 PLA와 CNC의 낮은 계면접착력 때문으로 기인된다. PLA/CNC 복합재 매트를 구성하는 섬유의 평균 지름 크기는 CNC의 함량이 증가할수록 작아졌다. 한편 PLA/CNC 나노섬유 복합재 매트의 열안정성은 CNC의 함량이 증가할수록 증가하는 것을 보였다.

브레이드 복합재료의 원공의 크기와 분포가 재료강도에 미치는 영향 (The Effect of Circulat Hole Size and Distribution on Strength of Braided Composite)

  • 이경우;강태진
    • 한국재료학회지
    • /
    • 제4권3호
    • /
    • pp.253-258
    • /
    • 1994
  • S2-유리 섬유/폴리에스터 브레이드 복합재료에서 원공의 크기 및 원공간 거리 변화가 인장성질, 핀하중 인장성질, 굽힘성질에 미치는 영향을 연구하였다. 원공의 크기에 따른 복합재료의 인장강도의 저하는 Whitney와 Nuismer에 의해 제시된 이론값과 대체로 일치함을 보여주었으며 이때의 특성길이($d_o$)는 브레이드 복합재료는 약 1.6mm, 직물 적층 복합재료는 약 1.8mm가 되었다. 브레이드 복합재료의 원공간 거리 변화에 따른 인장강도의 변화는 두 원공 중심 사이의 거리가 원공 지름의 4배 이상이면 원공간 상호작용이 없었다. 원공의 중심과 측면간 거리에 따른 인장강도의 변화는 원공의중심과 측면간 거리가 원공 지름의 3배 이상일 때 상호작용이 없었다. 핀하중 인장실험에서 브레이드 복합재료와 직물 적층 복합재료 모두 핀의 지름이 증가함에 따라 Bearing Stength는 감소하였다.

  • PDF

제주지역에서 질소시비량 차이에 따른 양마의 생육특성, 수량 및 조성분 변화 (Effect of Nitrogen Rate on Agronomic characteristics, Forage Yield and Chemical Composition of Kenaf on Jeju Island)

  • 조남기;송창길;조영일;고지병
    • 한국초지조사료학회지
    • /
    • 제21권2호
    • /
    • pp.59-66
    • /
    • 2001
  • In order to determine the influence of nitrogen on agronomic characters, forage yield and quality, a Kenaf was cultured on the volcanic ash soil at the Experimental Farm of Cheju national University under the seven levels of nitrogen rates(0, 50, 100, 150, 200, 250kg/ha) from April 25 to Dec. 25, 1999. The plant height increased by increase of nitrogen rate, showing longest 250kg/ha with 286.6cm and shortest at no application plot with 255.7cm. The difference on leaf number, leaf withering number, stem diameter and branches number by nitrogen rate showed a similar tendency to the plant height. Increasing N rate from 0 to 250kg/ha fresh forage yield form 55.8 to 99.8MT/ha, dry matter (DM) yield from 8.8 to 15.8MT/ha, crude protein(CP) yield form 1.2 to 3.1MT/ha, total digestible nutrients (TDN) yield from 3.8 to 8.6MT/ha. However, no significant differences in these yields were found between 200 and 250kg N/ha. Nitrogen uptake increased form 192.9 to 496.2 kg/ha but N use efficiency decreased form 95.0 to 66.6 kg DM$^{a}$ /kg N with increasing from 0 to 250 kg/ha. As N rate increased from 0 to 250kg/ha, leaf and stem out of CP, crude fat (CF), nitrogen free extract (NFE), TDN contents increased from 20.1% to 25.8% and from 9.7% to 12.4%, from 5.6% to 8.1% and from 3.3% to 4.4%, from 36.1% to 40.2% and from 21.9% to 32.4%, from 59.3% to 75.0% and from 32.2% to 38.2%, respectively, while leaf and stem out of crude fiber decreased from 18.5% to 16.7% and from 51.5% to 39.3%. Based on the these findings, the optimum N rate for forage production of kenaf seems to be about 200 kg/ha in atmospheric phenomena and volcanic ash soils of jeju island.

  • PDF

제주 조의 재식밀도에 따른 주요형질, 사초수량 및 조성분 변화 (Effects of Planting Densities on the Major Characters, Forage Yield and Chemical Composition of Jeju Italian Millet)

  • 조남기;강영길;김인식;조영일;오은경
    • 한국초지조사료학회지
    • /
    • 제21권2호
    • /
    • pp.53-58
    • /
    • 2001
  • Jeju Italian millet was grown at five planting densities(5$\times$5, 15$\times$15, 20$\times$20, 25cm) form May 13 to Aug. 14, 2000 at jeju island to determine influence of planting density on agronomic characters, forage yield and quality. Days to heading increased from 87 to 89 days as planting density was decreased. In 5$\times$5cm planting density plot, plant height was 185.4cm and it was gradually decreased as planting density was increased. So in 30$\times$30cm planting density plot, plant height was 173cm. As planting density increased, stem diameter, the number of nodes per plant, the umber of leaves, leaf width and SPAD reading values was increased, the longer leaf length as the broader planting density. Fresh forage yield increased from 29.99 to 55.01MT/ha, dry matter(DM) yield from 8.04 to 15.59MT/ha, crude protein(CP) yield from 0.78 to 2.26MT/ha and total digestible nutrients(TDN) yield from 3.65 to 7.93MT/ha as planting density was decreased. Crude protein content increased from 9.8 to 14.5% ether extract comtent from 1.4 to 1.9%, nitrogen free extract content from 38.4% to 38.9% and TDN content from 45.4 to 50.9%, but crude fiber content decreased from 34.5 to 30.1% and crude ash content from 9.1 to 8.0% as planting density was decreased.

  • PDF

Effects of Mixed Application of Chemical Fertilizer and Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Corn Hybrid for Silage in Paddy Field Cultivation

  • Lee, Sang Moo
    • 한국초지조사료학회지
    • /
    • 제32권4호
    • /
    • pp.369-378
    • /
    • 2012
  • This study was performed out to investigate the influence of the mixed application of chemical fertilizer (CF) and liquid swine manure (LSM) on the growth characteristics, dry matter yield, amino acids, minerals, and free sugars in cultivating silage corn on paddy soils. The field experiment was designed in a randomized block design of 3 repetitions with CF 100% treatment (C), CF 70% + LSM 30% treatment (T1), CF 50% + LSM 50% treatment (T2), CF 30% + LSM 70% treatment (T3), and LSM 100% treatment (T4). At this time, the application of LSM was based solely on the nitrogen. Ear length, ear circle, stem diameter, and stem hardness of the silage corn did not show significant differences between treatments. Fresh yield, dry matter yield and TDN yield were highest in T3, whereas the lowest in C treatment (p<0.05). Crude protein, crude fat, and crude ash content were significantly higher in T1, C, and T4 treatment, respectively (p<0.05). However, NDF, ADF and crude fiber content did not show significant difference between treatments. The total mineral content decreased significantly (p<0.05) as the LSM application rate increased. Total composition amino acid content was higher in the order of T1 > T2 > C > T4 > T3 treatment (p<0.05). Free sugar content was higher in the order of T1 > T3 > T4 > T2 > C treatment (p<0.05). Based on the above results, suggests that the mixed application of chemical fertilizer 30~50% and LSM 50~70% (T2 and T3) is the most effective, considering the yield performance and the content of sugar degree and free sugar affecting silage.

제주지역에서 파종기에 따른 청예피의 사료수량 및 조성분 변화 (Effect of Seeding Date on Forage Yield and Chemical Composition of Echinochloa crusgalli var. Frumentacea(Roxb) Wight in Jeju Region)

  • 조남기;강영길;송창길;고영순;조영일
    • 한국초지조사료학회지
    • /
    • 제21권4호
    • /
    • pp.217-224
    • /
    • 2001
  • In order to identify the growth characterization, the yield and chemical composition of Jeju barnyard grass (Echinochloa crusgalli var. fiurnentacea(Roxb) Wight) based on seeding date in Jeju region, seeding carried out the 10-day intervals from March 27 to September 30 in 2000, respectively. Plant height was 143.2 cm, showing the highest on seeding date, April 6 among that of any other seeding date. On the other hand, those of early and late seeding gradually decrease. Plant height was 119.2 an in May 16 seeding. The results of stem diameter, number of withering leaves, number of leaves and fresh weight per plant were similar to those of the plant heights. The yield of fresh, dry matter forage, crude protein and TDN found the highest on April 6 seeding, 63.5 MT/ha, 13.9 MTha, 1.1 MT/ha, and 7.6 MT/ha, respectively. In early and late seeding, the yield was gradually decreased. In seeding May 16, the yield found .38.2 MTIha in fresh forage, 6.2 MTha in dry matter forage, 0.7 MT/ha in crude protein and 3.7 MTha in TDN, respectively. According to delaying the seeding date, March 27 to May 16, the contents of crude protein (from 7.9 to 10.8%), ether extract (from 4.6 to 6.0%), nitrogen free extract (from 45.1 to 46.5%), and TDN (from 54.2 to 60.8%) were gradually increased, respectively. On the other hand, those of crude fiber (from 28.9 to 25.6%) and crud ash (from 13.5 to 11.2%) were decreased. These results showed that April 6 was the optimum seeding date with the sole object of feed production of Jeju barnyard grass under the environmental condition like as atmospheric phenomena and soil in Jeju region. (Key words : Jeju barnyard grass, Seeding date, Forage yield, Chemical composition)

  • PDF

외부흐름 중공사 막형 인공폐의 액체흐름과 압력손실 (Liquid Flow and Pressure Drop of an Outside Flow Membrane Oxygenator with Hollow Fibers)

  • 이삼철;김기범
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 2002
  • 본 연구에서는 혈관내 혈액 흐름의 압력손실을 최소화하여야 하는 제한 인자를 만족하는 새로운 막형 인공폐에서 액체흐름경향과 중공사 개수에 대한 압력손실 영향을 고찰하고자 하였다 막형 인공폐는 380 $\mu m$의 중공사 외경과 600 mm의 축 방향 길이를 갖는 수 백 개의 중공사로 이루어진 다발이다 중공사 다발은 8가지로 변화시켰으며 흐름은 펌프를 이용하여 조절하였다 혈액대용물질로 글리세롤 용액과 물을 사용하여 압력손실을 측정하였으며 동일한 흐름 경향을 각 중공사들에서 얻었다. 700개의 중공사로 이루어진 막형 인공 폐의 외부 압력손실은 13-16 mmHg이었으며 중공사 개수의 감소에 따른 마찰계수는 중공사와 액체와의 효과적인 접촉이 일어나므로 증가되었다.

Effects of Blend Ratio and Heat Treatment on the Properties of the Electrospun Poly(ethylene terephthlate) Nonwovens

  • Kim Kwan Woo;Lee Keun Hyung;Lee Bong Seok;Ho Yo Seung;Oh Seung Jin;Kim Hak Yong
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2005
  • Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electro spun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

인산처리 유·무에 따른 레이온직물의 열수축과 열안정성에 미치는 안정화 공정 조건의 영향 (Effect of Stabilization Processing Conditions on the Thermal Shrinkage and the Thermal Stability of Rayon Fabrics Untreated and Surface-Treated with Phosphoric Acid)

  • 조동환;이종문;박종규
    • 접착 및 계면
    • /
    • 제5권3호
    • /
    • pp.10-17
    • /
    • 2004
  • 본 연구에서는 레이온직물에 대하여 승온속도, 안정화온도, 분위기가스, 화학적 표면처리 등 여러가지 조건에서 안정화공정을 행한 후, 직물의 열수축과 열안정성, 그리고 미세구조에 미치는 공정 조건의 영향을 조사하였다. 레이온직물의 열수축과 중량변화에 인산처리 유무와 승온속도가 가장 중요한 영향을 미쳤다. 특히, 인산처리를 한 경우가 하지 않은 경우보다 레이온직물의 두께변화는 약 80%, 길이변화는 약 20%, 그리고 중량변화는 약 26%가 줄어드는 열수축 억제 효과를 보여주었다. 안정화 된 레이온직물의 열안정성에는 안정화온도와 인산처리 그리고 분위기가스와 승온속도 등 주어진 안정화공정 조건 모두가 영향을 주었다. 또한 안정화섬유의 표면 상태 및 섬유직경 변화도 공정 전에 행한 인산처리의 유무에 의존하였다.

  • PDF