• Title/Summary/Keyword: Fiber Bragg grating sensor

Search Result 261, Processing Time 0.027 seconds

Measurement of Transverse Strain Using PMBG Sensor (PMFBG 센서를 이용한 횡방향 변형률 측정)

  • 윤혁진;김대현;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.27-30
    • /
    • 2002
  • PMFBG sensor was fabricated using phase mask and Excimer laser. The reflected wavelength of PMFBG sensor had dual peaks due to intrinsic birefringence. To discover the polarization axes, peak sensitivity was measured under compression test. The signal characteristics of PMFBG sensor were also examined in embedding condition. The embedded PMFBG sensor in epoxy block was loaded for the transverse strain measurements. Experiments showed that the PMFBG sensor could successfully measure the transverse strain. This PMFBG sensor is useful for the structures that require measuring transverse stram.

  • PDF

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Characteristics of Thermal Coefficient of Fiber Bragg Grating for Temperature Measurement (온도 측정을 위한 광섬유 브래그 격자 센서의 온도 계수 특성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.999-1005
    • /
    • 2013
  • A fiber Bragg grating sensor is considered a smart sensor that shows outstanding performance in the field of structural health monitoring (SHM). It has a powerful advantage, especially that of multiplexing, which enables several parameters to be sensed at multiple points by using a single optical fiber line. Among several parameters, the thermal expansion coefficient and thermo-optic coefficient are required to measure temperature. In previous studies, these were considered constant variables. This study shows that two parameters vary with temperature and newly proposes a temperature function for these two parameters. Specifically, these two parameters were defined as a single variable, and then, it was experimentally verified that this variable is a function of temperature. Finally, it was shown that temperature from RT to $100^{\circ}C$ was precisely measured by using the temperature function that was defined through the experiment.

High-Resolution Interrogation Technique for Fiber Bragg crating Sensor Using Long-Period Fiber Grating Pair and Erbium-Doped fiber

  • Jung, Jae-Hoon;Lee, Yong-Wook;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.5-12
    • /
    • 2002
  • A novel interrogation scheme to detect fine Bragg wavelength shift using a long period fiber grating pair with erbium-doped fiber inserted between the two gratings is reported. The technique is shown to feature high resolution and much more immunity to temperature perturbation compared to the conventioned Mach-Zehnder interferometer demodulation system. For quasi-static strain measurement, this approach provides high wavelength resolution of 0.05 pm that corresponds to 41.7 ne in strain and $3.8 $\times$ 10^{-3}$$^{\circ}C$ in temperature. This interrogation system is also employed in dynamic measurement to obtain the minimum detectable strain perturbation of ~ 8.76 ne/H $z^{{\frac}{1}{2}}$ at 100 Hz. Moreover, this interrogation system has prominent thermal stability. This thermal stability comes from the fact that two arms of the interferometer, the core and cladding in erbium-doped fiber, are exposed to nearly the same environment .

A Study about Mass Measurement Sensor of Optical Fiber Bragg Gratings (광파이버 브래그 격자형 무게 측정 센서에 관한 연구)

  • Lee, Jong-Youn;Choi, Chang-Won;Son, Yong-Hwan;Chang, Jin-Hyeon;Jung, Jin-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.631-634
    • /
    • 2005
  • This paper has been studied a optical fiber sensor offer important advantages such as electrically passive operation, EMI immunity, high sensitivity, and multi-plexing capabilities of this technology has been the characteristic. The shift in optical fiber Bragg wavelength with mass can be expressed. Using the shift in the optical fiber Bragg grating(FBG) center wavelength due to mass change.

  • PDF

Radiation resistant Characteristics of Fiber Bragg Grating Sensors made with 800-nm femtosecond laser (800nm급 펨토초 레이저로 제작된 FBG 센서의 내방사선 특성)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu;Sohn, Ik-Bu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.711-713
    • /
    • 2017
  • Fiber Brag grating sensors were written in standard Ge-doped telecom optical fiber (Corning SMF-28) using an 800nm femtosecond laser and a phase mask. It were exposed to gamma-radiation up to a dose of 100 kGy to evaluate the radiation effect. The fs-FBG-2 sensor showed incomplete optical characteristics during irradiation, but the fs-FBG-1 sensor showed excellent radiation resistance with Bragg wavelength shift(BWS) of less than 10pm at a dose of 100 kGy.

  • PDF

Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser (분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서)

  • Choi, Byeong Kwon;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.211-216
    • /
    • 2012
  • We report a resonance fiber Bragg sensor interrogation based on a Fourier domain mode-locking (FDML) laser. The FDML laser is constructed based on a conventional ring laser cavity configuration with fiber Fabry-Perot tunable filter (FFP-TF). There are two sensor parts which are composed with two FBGs inside the laser cavity. Each sensor part provides a separate laser cavity for the FDML laser. The resonance frequencies of the laser cavities are 46.687 kHz and 44.340 kHz, respectively. We applied a static and a dynamic strain on the FBG sensor system. The slope coefficients of the measured relative wavelength shift and relative time interval from the static strain are found to be $0.61pm/{\mu}{\epsilon}$ and $0.8ns/{\mu}{\epsilon}$, respectively.

Simultaneous Measurement of Strain and High Frequency Vibration of Composite Main Wing Model (복합재 주 날개 모델의 변형률과 진동의 동시 측정)

  • Song, Ji-Yong;Yoon, Hyuk-Jin;Park, Sang-Wuk;Park, Sang-Oh;Kim, Chon-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.185-189
    • /
    • 2005
  • For the simultaneous measurement of strain and vibration signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter could measure low-frequency signal such as strain and the other demodulator using a coarse wavelength division multiplexer could detect high-frequency signal such as vibration signal using intensity demodulation method. In order to measure strain and vibration of the composite main wing model under static loading a real time monitoring program was developed. Also using intensity demodulation of CWDM, sensitivity and resolution at high frequency vibration were evaluated.

  • PDF

Design and Evaluation of Temperature Taxel for Tactile Sensation Using Fiber Bragg Grating (광섬유 브래그 격자를 이용한 촉감 감지용 단위 온도 센서 설계 및 평가)

  • Heo J.S.;Lee J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.21-22
    • /
    • 2006
  • Abstract should be written in English using Times New Roman 9pt. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here.

  • PDF

Study on the Fiber Bragg Grating Sensors for Smart Structures and Their Applications (스마트 구조물용 광섬유 격자센서 및 그 응용)

  • Kim Ki-Soo;Song Young-Chul;Pang Gi-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.115-118
    • /
    • 2004
  • In this paper, a Fiber Bragg Grating (FBG) sensor system for smart structures is described. FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system, a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We applied the FBG system to composite repairing structures and beam column joint of building structure. We also applied the system to nuclear energy power plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain, temperature and vibration detectors as parts of smart structures.

  • PDF