DOI QR코드

DOI QR Code

High-Resolution Interrogation Technique for Fiber Bragg crating Sensor Using Long-Period Fiber Grating Pair and Erbium-Doped fiber

  • Jung, Jae-Hoon (School of Electrical Engineering, Seoul National University) ;
  • Lee, Yong-Wook (School of Electrical Engineering, Seoul National University) ;
  • Lee, Byoung-Ho (School of Electrical Engineering, Seoul National University)
  • Received : 2001.10.12
  • Published : 2002.03.01

Abstract

A novel interrogation scheme to detect fine Bragg wavelength shift using a long period fiber grating pair with erbium-doped fiber inserted between the two gratings is reported. The technique is shown to feature high resolution and much more immunity to temperature perturbation compared to the conventioned Mach-Zehnder interferometer demodulation system. For quasi-static strain measurement, this approach provides high wavelength resolution of 0.05 pm that corresponds to 41.7 ne in strain and $3.8 $\times$ 10^{-3}$$^{\circ}C$ in temperature. This interrogation system is also employed in dynamic measurement to obtain the minimum detectable strain perturbation of ~ 8.76 ne/H $z^{{\frac}{1}{2}}$ at 100 Hz. Moreover, this interrogation system has prominent thermal stability. This thermal stability comes from the fact that two arms of the interferometer, the core and cladding in erbium-doped fiber, are exposed to nearly the same environment .

Keywords

References

  1. M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994) https://doi.org/10.1049/el:19940059
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993) https://doi.org/10.1364/OL.18.001370
  3. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 29, 1510 (1993) https://doi.org/10.1049/el:19931006
  4. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Elec-tron. Lett. 28, 236 (1992) https://doi.org/10.1049/el:19920146
  5. J. Jung, Y. W. Lee, and B. Lee, Proc. SPIE, 4185, 114 (2000)
  6. J. Jung, Y. W. Lee, and B. Lee, in The 13th An-nual IEEE Lasers and Electro Optics Society Meeting (LEOS) (Rio Grande, Puerto Rico, USA, 2000), 679 https://doi.org/10.1109/LEOS.2000.894035
  7. D. P. Hand and P. St. J. Russel, Opt. Lett., 15, 102 (1990) https://doi.org/10.1364/OL.15.000102
  8. E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, and V. N. Protopopov, in Proc. Of Eu-ropean Conf. on Optical Communication (Gent, Bel-gium, 1997), 65
  9. B. H. Lee and J. Nishii, Opt. Lett. 23, 1624 (1998) https://doi.org/10.1364/OL.23.001624
  10. D. S. Starodubov, V. Grubsky, and J. Feinberg, IEEE Photon. Technol. Lett. 10, 1590 (1998) https://doi.org/10.1109/68.726759
  11. Y. Jeong, S. Baek, and B. Lee, IEEE Photon. Technol. Lett. 12, 1216 (2000) https://doi.org/10.1109/68.874240
  12. Y.-J. Rao, Optical Fiber Sensor Technology (Chap-man & Hall, London, UK, 1998) vol. 2
  13. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18,72 (1993) https://doi.org/10.1364/OL.18.000072
  14. M. Song, Ph. D. dissertation, Seoul National University (1997)

Cited by

  1. Elimination of Light Intensity Noise Using Dual-Channel Scheme for Fiber MZI-Based FBG Sensor Interrogation vol.16, pp.8, 2016, https://doi.org/10.1109/JSEN.2016.2515130
  2. High-Resolution AWG-Based Fiber Bragg Grating Interrogator vol.28, pp.20, 2016, https://doi.org/10.1109/LPT.2016.2587812