• Title/Summary/Keyword: Ferroelectric Characteristics

Search Result 313, Processing Time 0.031 seconds

Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Gap with a Ferroelectric Pellet Bed (강유전체 충진 선대선 방전갭의 코로나 방전 및 오존 발생특성)

  • Shin, Jung-Min;Bae, Chang-Hwan;Ahn, Chang-Jin;Lee, Jong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1873-1875
    • /
    • 2003
  • Surface corona discharge characteristics of a ac corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charged stored on the surfaces of the ferroelectric pellets by a at corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between wire electrodes. As a result, in the case of the corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be generated efficiently. It is also found that, the ferroelectric pellet barrier discharge reactor had better discharge characteristics for plasma generation than the wire-to-wire discharge reactor without pellets.

  • PDF

Surface Discharge Characteristics of a DC Corona Charged Ferroelectric Pellet Barrier (직류 코로나 하전된 강유전체구 층의 연면방전특성)

  • Geum, Sang-Taek;Lee, Geun-Taek;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.385-390
    • /
    • 1999
  • Surface corona discharge characteristics of a dc corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charges stored on the surfaces of the ferroelectric pellets by a dc corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between corona tip and mesh electrode. Positive and negative dc voltages were applied to the tip to generate partial discharges, and corona currents were estimated to investigate the buildup charge on ferroelectric pellets as a function of the applied time and the charge relaxation time constants of ferroelectric pellets. As a result, in the case of the negative corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be fenerated efficiently. It is also found that, charge relaxation time, dielectric constants offerroelectric pellets, polarity of applied voltage and applied time affected to the surface discharges among the ferroelectric pellets.

  • PDF

Fabrication of Thin Film Transistor Using Ferroelectrics

  • Hur, Chang-Wu;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.93-96
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_{3}N_{4}$. Ferroelectric increases on-current, decreases threshold voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, retractive index of 1.8∼2.0 and resistivity of $10^{13}$~$10^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60∼100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8∼20 $\mu\textrm{m}$ and channel width of 80∼200 $\mu\textrm{m}$. And it shows that drain current is 3.4$\mu\textrm{A}$ at 20 gate voltage, $I_{on}$/$I_{off}$ is a ratio of $10^5$~$10^8$ and $V_{th}$ is 4∼5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $\mu\textrm{A}$ at 20 gate voltage and $V_{th}$ is 5∼6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.

Current Status and Prospects of FET-type Ferroelectric Memories

  • Ishiwara, Hiroshi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • Current status and prospects of FET-type FeRAMs (ferroelectric random access memories) are reviewed. First, it is described that the most important issue for realizing FET-type FeRAMs is to improve the data retention characteristics of ferroelectric-gate FETs. Then, necessary conditions to prolong the retention time are discussed from viewpoints of materials, device structure, and circuit configuration. Finally, recent experimental results related to the FET-type memories are introduced, which include optimization of a buffer layer that is inserted between the ferroelectric film and a Si substrate, development of a new ferroelectric film with a small remnant polarization value, proposal and fabrication of a 1T2C-type memory cell with good retention characteristics, and so on.

  • PDF

Switching Dynamics Analysis by Various Models of Hf0.5Zr0.5O2 Ferroelectric Thin Films (Hf0.5Zr0.5O2 강유전체 박막의 다양한 분극 스위칭 모델에 의한 동역학 분석)

  • Ahn, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • Recent discoveries of ferroelectric properties in ultrathin doped hafnium oxide (HfO2) have led to the expectation that HfO2 could overcome the shortcomings of perovskite materials and be applied to electron devices such as Fe-Random access memory (RAM), ferroelectric tunnel junction (FTJ) and negative capacitance field effect transistor (NC-FET) device. As research on hafnium oxide ferroelectrics accelerates, several models to analyze the polarization switching characteristics of hafnium oxide ferroelectrics have been proposed from the domain or energy point of view. However, there is still a lack of in-depth consideration of models that can fully express the polarization switching properties of ferroelectrics. In this paper, a Zr-doped HfO2 thin film based metal-ferroelectric-metal (MFM) capacitor was implemented and the polarization switching dynamics, along with the ferroelectric characteristics, of the device were analyzed. In addition, a study was conducted to propose an applicable model of HfO2-based MFM capacitors by applying various ferroelectric switching characteristics models.

Equivalent Circuit Modeling and Characteristics Simulation of Ferroelectric Switching Devices (강유전성 스위칭 소자의 등가회로 모델과 특성 시뮬레이션)

  • Kim, Jin-Hong;Hong, Sung-Jin;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1506-1508
    • /
    • 2001
  • We have investigated for the modeling and the simulation of the ferroelectric capacitor and MFS TFT (Metal-Ferroelectric-Semiconductor Thin Film transistor). For ferroelectric capacitor modeling, we adopted the equivalent circuit model which consists of a nonlear capacitor, a nonliner resistor, and a linear capacitor. MFS TFT have been modeled by combining the ferroelectric capacitor and Bsim3 MOSFET model. Our simulations show the characteristics of ferroelectric capacitor and MFS TFT.

  • PDF

Investigations of Ferroelectric Polarization Switching in Potassium Nitrate Composite Films

  • Kumar, Neeraj;Nath, Rabinder
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • This article explains the experimental results of ferroelectric polarization switching (FPS) of potassium nitrate ($KNO_3$) with different polymers such as polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF) using simple melt-press techniques. To analyze the ferroelectric polarization switching in potassium nitrate ($KNO_3$) composite films at room temperature, we applied the Ishibashi and Takagi theory (based on Avrami model) to the switching current transient. To investigate the dimensionality of domain growth, the ferroelectric polarization switching current (FPS current) was observed from the square - wave bipolar signals across a resistance of $0.1k{\Omega}$ in series with the composite films. The existence of a switching current transient pulse confirmed the ferroelectricity and indicated the stability of the ferroelectric phase (phase III) of $KNO_3$ at room temperature. Polarization hysteresis (P-E) characteristics supported the prominent features of ferroelectric polarization switching in the composite films at room temperature.

Fatigue characteristics of $Pb(Zr,Ti)O_3$ capacitors on donor doping

  • Yang, Bee Lyong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.113-117
    • /
    • 2002
  • Fatigue characteristics of ferroelectric $Pb(Zr,Ti)O_3$ (PZT) based capacitors through donor doping is reported in this paper. La substitution up to 10% were carried out to study systematically the fatigue behaviors of epitaxial ferroelectric capacitors grown on Si using $(Ti_{0.9}Al_{0.1})N/Pt$ conducting barrier composite. Ferroelectric capacitors substituted with 10% La show sufficient low voltage switched polarization and fatigue free performance. Systematic decrease in the tetragonality of the ferroelectric phase (i.e., c/a ratio) results in the corresponding reduction in coercive voltage, sufficient remnant polarization at 1.5-3V, and good fatigue property.

Device Characteristics of MFSFET with the Fatigue of the Ferroelectric Thin Film (강유전박막의 피로현상을 고려한 MFSFET 소자의 특성)

  • 이국표;강성준;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.191-194
    • /
    • 1999
  • Switching behaviour of the ferroelectric thin film and device characteristics of the MFSFET (Metal-Ferroelectric-Semiconductor FET) are simulated with taking into account the accumulation of oxygen vacancies near interface between the ferroelectric thin film and the bottom electrode caused by the progress of fatigue. We show net switching current decreases due fatigue in the switching model. It indicates that oxygen vacancy strongly suppresses polarization reversal. The difference of saturation drain current of the device before fatigue is shown by the dual threshold voltages in I$_{D}$-V$_{D}$ curve as 6㎃/$\textrm{cm}^2$ and decreases as much as 50% after fatigue. Our simulation model is expected to play an important role in estimation of the behavior of MFSFET device with various ferroelectric thin films.lms.

  • PDF

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF