• Title/Summary/Keyword: Ferrite powder

Search Result 246, Processing Time 0.028 seconds

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Kim, Seung-Soo;Min, Jae-Ho;Baik, Min-Hoon;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.945-952
    • /
    • 2012
  • The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.

Morphology of La-Co substituted SrM ferrite (La-Co치환량에 따른 스트론튬 페라이트의 미세구조)

  • Jang, Se-Dong
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.31-36
    • /
    • 2004
  • This experiment was carried out to examine the effects of morphology on properties of La-Co substituted SrM ferrite. The magnetic properties of calcined and sintered materials were varried with the substitutional amount of La and Co elements in Sr-ferrite. In the substituted SrM ferrite, the atomic fraction x of La is directly related to the mole ratio n of iron oxide and the atomic fraction y of Co by equation x=2ny. The Hcj values of the calcined powder were about 270 kA/m and 240 kA/m with x=0.3 and x=0.2, respectively at stoichiometry, n=6.0. Crystallites of the sintered material were grown with a plate shape, and their size decreased with increasing mole ratios. Such a shape was caused by the initial state of crystallite formed after calcination. In case of x=0.3 and n=6.0, Br was 415 mT and Hcj was 355 kA/m, and in x=0.2 and n=6.0, Br was 410 mT and Hcj was 370 kA/m. The squareness in 2nd quarter of BH curve with x=0.2 was smoothly improved to compared with x=0.3.

Morphology of La-Co substituted SrM ferrite (La-Co 치환량에 따른 스트론튬 페라이트의 미세구조)

  • Jang Se-Dong
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.27-34
    • /
    • 2004
  • This experiment was carried out to examine the effects of morphology on properties of La-Co substituted SrM ferrite. The magnetic properties of calcined and sintered materials varied with the substitutional amount of La and Co elements in Sr-ferrite. In the substituted SrM ferrite, the atomic fraction x of La is directly related to the mole ratio n of iron oxide and the atomic fraction y of Co by equation x=2ny. The HcJ values of the calcined powder were about 270 kA/m and 240 kA/m with x=0.3 and K=0.2, respectively at stoichiometriy, n=6.0. Crystallites of the sintered material were grown with a plate shape, and their size decreased with increasing mole ratios. Such a shape was caused by the initial state of crystallite formed after calcination. In case of x=0.3 and n=6.0, Br was 415 mT and HcJ was 355 kA/m, and in x=0.2 and n=6.0, Br was 410 mT and HcJ was 370kA/m. The squareness in 2nd quarter of BH curve with x=0.2 was smoothly improved compared with x=0.3

  • PDF

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

CO2 Decomposition Characteristics of Zn-ferrite Powder Prepared by Hydrothermal and Solid State Reaction (수열합성법과 고상법을 이용해 제조된 Zn-ferrite 분말의 이산화탄소 분해 특성)

  • Nam, Sung Chan;Park, Sung Youl;Yoon, Yeo Il;Jeong, Soon Kwan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.555-561
    • /
    • 2011
  • The objective of this study is the development of carbon recycle technology which converts $CO_2$ captured from flue gas to CO or carbon and reuse in industrial fields. Since $CO_2$ is very stable and difficult to decompose, metal oxide was used as an activation agent for the decomposition of $CO_2$ at low temperature. Metal oxides which convert $CO_2$ to CO or carbon at $500^{\circ}C$ were prepared using Zn-ferrite by the solid state reaction and hydrothermal synthesis. The behaviors of $CO_2$ decomposition were studied using temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA). Zn-ferrite containing 5 wt% ZnO showed the largest reduction and oxidation. Reduction by $H_2$ was 26.53 wt%, oxidation by $CO_2$ was 25.73 wt% and 96.98% of adsorbed $CO_2$ was decomposed to $CO_2$ and carbon with excellent oxidation-reduction behaviors.

A Study on Magnetic Properties of BaFe12O_19 Fabricated by Self-assembly Method (자기 조립법을 이용한 BaFe12O_19의 제조 및 자성 특성에 대한 연구)

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Lee, Hye-Mum;Kim, Su-Min;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.410-415
    • /
    • 2009
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully synthesised using selfassembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition Fe ions to Ba-DEA complex and then heat treated at temperature range of 800-1000${\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperature significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at 1000${\circ}C$ for 1 hour showed the coercive forces (iHc) of 4.84 kOe with average crystal size of about 200 nm.

Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process (분말 합금법으로 제조된 Fe-Cr-Al 금속 다공체의 구조, 미세조직 및 기계적 특성)

  • Kim, Kyu-Sik;Kang, Byeong-Hoon;Park, Man-Ho;Yun, Jung-Yeul;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.