• Title/Summary/Keyword: Fermi-Dirac

Search Result 25, Processing Time 0.03 seconds

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): An Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.1-114.1
    • /
    • 2014
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the p band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy ($E_F$) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about 0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the $E_F$) by 0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and that the electron transfer is limited to that between the Shockley surface state of Cu(111) and the p band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Jung, Yong Gyun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.146.2-146.2
    • /
    • 2013
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the ${\pi}$ band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy (EF) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about -0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the EF by ~0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and the electron transfer is limited to that between the Shockley surface state of Cu(111) and the ${\pi}$ band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Line-profile Formula in the Carbon Nanotubes by Electron Spin Resonance

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • The line-width of carbon nanotubes (CNTs) was studied as a function of the temperature at a frequency of 9.49 GHz in the presence of external electromagnetic radiation. The relative frequency dependence of the absorption power is obtained with the projection operator technique (POT) proposed by Kawabata. The line-width increased as the temperature increased in the high-temperature region (T>200 K). The scattering is little affected in the low-temperature region (T<200 K) because there is no correlation between the resonance field and the Fermi-Dirac distribution function. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition problems.

Electronic Structures of Graphene Intercalated by Oxygen on Ru(0001): Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.114-114
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition (CVD) processes. Such epitaxial graphene shows modified electronic structures caused by substrates. In the method for removal of the effect of substrate, there are bi, tri-layer graphene, gold intercalation, and oxygen intercalation. Here, We will present the changes of geometric and electronic structure of graphene grown on Ru(0001) by oxygen intercalation between graphene and Ru(0001). Using Scanning tunneling microscopy (STM) and spectroscopy (STS), we observed the aspect that the band gap features near the fermi level of graphene on Ru(0001) system is shifted and narrow. Based on the observed results, two effects by intercalated oxygen were considered.

  • PDF

Pseudo-electromagnetism in graphene

  • Son, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.11-11
    • /
    • 2011
  • In this talk, I will discuss roles of pseudo vector and scalar potential in changing physical properties of graphene systems. First, graphene under small uniaxial strain is shown to be described by the generalized Weyl's Hamiltonian with inclusion of pseudo vector and scalar potential simultaneously [1]. Thus, strained graphene is predicted to exhibit velocity anisotropy as well as work function enhancement without any gap. Second, if homogeneous strains with different strengths are applied to each layer of bilayer graphene, transverse electric fields across the two layers can be generated without any external electronic sources, thereby opening an energy gap [2]. This phenomenon is made possible by generation of inequivalent pseudo scalar potentials in the two graphene layers. Third, when very tiny lateral interlayer shift occurs in bilayer graphene, the Fermi surfaces of the system are shown to undergo Lifshitz transition [3]. We will show that this unexpected hypersensitive electronic topological transition is caused by a unique interplay between the effective non-Abelian vector potential generated by sliding motions and Berry's phases associated with massless Dirac electrons.

  • PDF

Integral Approximate Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 적분 근사해)

  • Chung, Jae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • This paper deals with approximate integral solutions to the one-dimensional model describing the charging process of stratified thermal storage tanks. Temperature is assumed to be the form of Fermi-Dirac distribution function, which can be separated to two sets of cubic polynomials for each hot and cold side of thermal boundary layers. Proposed approximate integral solutions are compared to the previous works of the approximate analytic solutions and show reasonable agreement. The approach, however, has benefits in mathematical difficulties, complicated solution form and unstable convergence of series solution founded in the previous analytic solutions. Solutions for a semi-infinite region, which have simple closed form solutions, give close agreement to those for a finite region. Thermocline thickness is obtained in closed form and shows proportional behavior to the square root of time and inverse proportional behavior to the square root of flow rate.

A Calculation of C-V Characteristics for ${Hg}_{1-x}{Cd}_{x}$Te MIS Device (${Hg}_{1-x}{Cd}_{x}$Te MIS 소자의 C-V 특성 계산)

  • 이상돈;김봉흡;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.420-431
    • /
    • 1994
  • The HgCdTe material, which is II-VI compound semiconductor, is important materials for the fabrication of the infrared detectros. To suggest the model of accurate MIS C-V calculation for narrow band gap semiconductors such as HgCdTe, non-parabolicity from k.p theory and degeneracy effect are considered. And partially ionized effect and compensation effect which are material's properties are also considerd. Especially, degenerated material C-V characteristics from Fermi-Dirac statistics and exact charge theory are presented to get more accurate analysis of the experimental results. Also the comparison with calculation results between the general MIS theory from Boltzmann appoximation method and this model which is considered the narrow band gap semiconductor properties, show that this model is more useful theory to determination of accurate low and high frequency C-V characteristics.

  • PDF

Controls of Graphene work function by using the chemical and plasma treatment

  • Lee, Seung-Hwan;Choe, Min-Seop;Im, Yeong-Dae;Ra, Chang-Ho;Mun, In-Yong;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.215-215
    • /
    • 2012
  • 본 연구에서는 화학적 도핑 방법 및 플라즈마 표면 처리방법을 이용하여 그래핀 내 Electron & Hole carrier 들의 농도를 변화시켜, 전계효과에 따른 Graphene Field Effect Transistors (GFETs) 소자의 전기적 특성 변화를 확인 하였으며, 전기적 특성 결과 중에 Dirac-point (DP) 이동에 따른 그래핀 $E_F$ (Fermi-energy) level 변화를 계산 및 유추 하였으며, Ultraviolet Photoelectron Spectroscpy (UPS)를 이용하여 실제적으로 He 소스 광전자를 그래핀 샘플 표면에 입사하여 나오는 전자들의 Kinetic Energy($E_K$) 결과를 이용하여 Work function (WF) 변화를 확인 및 검증하였다.

  • PDF

A Model for Characteristics in the $AL_xGa_{1-x} As Layer$ of MOSFET's (MODFEET의 $AL_xGa_{1-x} As Layer$내의 특성 모델)

  • Park, Kwang Mean;Oh, Yun Kyung;Kim, Hong Bae;Kwack, Kae Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.445-452
    • /
    • 1987
  • In this paper, a model for characteristics in the AlxGa1-xAs layer of MODFET's is presented. The characteristics of conduction band in the AlxGa1-xAs layer is analyzed with the Fermi-Dirac statistics. And using the conduction band energy which is calculated with the numerical calculation method (false-Positon method), the variations of the electric-field distribution, the ionized donor concentration, and the two-dimensional electron gas density with gate voltage are calculated, respectively. The channel formation process for the parasitic MESFET operation in the MOD structure is also analyzed, and the characteristics in the AlxGa1-xAs layer is analytically modeled. The throretical results describe well the general characteristics in the MOD structure.

  • PDF

Effect of Zinc Vacancy on Carrier Concentrations of Nonstoichiometric ZnO

  • Kim, Eun-Dong;Bahng, Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.17-21
    • /
    • 2001
  • We proposed that concentrations of cartier electron as well as ionized donor defects in nonstoichiometric ZnO are proportional to $P^{-1/2}_{O_2}$, whenever they ionizes singly or doubly, by employing the Fermi-Dirac (FD) statistics for ionization of the native thermal defects $Zn_i$ and $V_o$. The effect of acceptor defect, zinc vacancy $V_{Zn}$made by the Frenkel and Schottky disorder reactions, on carrier concentrations was discussed. By application of the FD statistics law to their ionization while the formation of defects is assumed governed by the mass-action law, the calculation results indicate; 1. ZnO shows n-type conductivity with $N_D>$N_A$ and majority concentration of $n{\propto}\;P^{-1/2}_{O_2}$ in a range of $P_{O_2}$, lower than a critical value. 2. As the concentration of acceptor $V_{Zn}$ increases proportional to $P^{1/2}_{O_{2}}$, ZnO made at extremely high $P_{O_{2}}$, can have p-type conductivity with majority concentration of p ${\propto}\;P^{-1/2}_{O_{2}}$. One may not, however, obtain p-type ZnO if the pressure for $N_{D}<$N_{A}$ is too high.

  • PDF