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Abstract : The line-width of carbon nanotubes (CNTs) was studied as a function of 
the temperature at a frequency of 9.49 GHz in the presence of external 
electromagnetic radiation. The relative frequency dependence of the absorption 
power is obtained with the projection operator technique (POT) proposed by 
Kawabata. The line-width increased as the temperature increased in the high-
temperature region (T>200 K). The scattering is little affected in the low-
temperature region (T<200 K) because there is no correlation between the resonance 
field and the Fermi-Dirac distribution function. Thus, the present technique is 
considered to be more convenient to explain the resonant system as in the case of 
other optical transition problems. 
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INTRODUCTION 

 

Electron spin resonance (ESR) spectroscopy has been used to assess the quality of carbon 

nanotube, CNT.1 In ESR experiments, one applies a static magnetic field and measures the absorption 

power of electromagnetic radiation polarized perpendicular to the field direction. In the absence of 

SU(2) spin symmetry breaking terms in the system Hamiltonian, the absorption power is then simply 
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a delta peak at the Zeeman energy. Since spin-orbit coupling (SOC) are generally the leading terms 

breaking the SU(2) invariance, deviations in the absorption power from delta peak, e.g., shifts or 

broadenings, are directly connected to these coupling. Initially, it was assumed that a SOC in CNTs, 

due to zp  electrons, would lead to a long spin relaxation compared with typical semiconductors. 

However, numerous experimental measurements of spin transport and ESR in CNTs present some 

different results for the magnitude of the spin relaxation.2,3 

From a theoretical point of view, the studies performed thus far on a resonant system in the 

presence of electromagnetic radiation have usually been based on the following methodologies: 

Green’s function approach, Feynmann’s path integral approach, the Wigner representation approach, 

and the projection operator technique (POT). There have been numerous methods for the calculation 

of resonance line-widths. Among the above mentioned methods, we focus on the POT of Kawabata.4 

By using this method, we succeeded in formulating a response theory,5-8 which includes the Kubo9 

formalism as the lowest-order approximation.  

In the present work, we calculate the line-width with the same proposition that Kawabata used 

and compare experimental data of Salvetat et al.10 Through numerical calculations, we analyze the 

relative frequency dependence of the absorption power and the temperature dependence of the line-

width at a frequency of 9.49 GHz in the presence of external radiation. Finally, we discuss the results 

and draw conclusions. 
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SYSTEM 

 

We begin with a few essential definitions concerning CNTs. The CNT is conveniently imagined 

as a spiral graphite sheet (graphene) rolled along the chiral vector 
hC


 as below (see Fig. 1)11  

 

Figure 1. The lattice structure of graphene. 

 

,h a bC n a n b 
 

                                                          (1) 

where (1,0)cca a


 and (1 / 2, 3 / 2)ccb a


 are the graphene lattice unit vectors with 

0.246cca  nm  and 
an  and 

bn  are integers, which characterize the geometry of a particular CNT. 

The slop of 
hC


 is defined by 

1 3
tan ,

2
b

a b

n

n n
   
   

                                                      (2) 
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and the diameter of the CNT is given by 1/23 ( ) ,h cc a b a bC a n n n n  


 /hd C 


. The 

graphene two-valley band structure projects onto the CNT one so that in the vicinity of each valley 

the Hamiltonian takes the form:12  

1 2( ),z F mH H v k                                                   (3) 

where the Fermi velocity is 53 10Fv   m/s , 
1  and 

2  are Pauli spin matrices and, k  is the 

wave vector of electron. The energy band structure of graphene are located at the K  and 'K  corner 

points of the first Brillouin zone. Which will be labeled by 1   , 1  respectively. In the reference 

frame ( , , )   , the Zeeman Hamiltonian takes the form (sin cos )z zH S S     , 

z e Bg B   ( 2eg   and B  is the Bohr magneton) so that the frequency of spin procession is 

given by 

22
0 1 1( sin ) cos 2 ( ) / .z z                                   (4) 

, ,
CNT
k m  is an eigenstates of H  for an spin-up electron; and 

, ,
CNT
k m   for a down-spin 

electron. Then, 
, ,

CNT
k m  satisfies the Schrödinger equation as below 

 2 2
, , , , , ,CNT CNT

k m F m k mH v k                                         (5) 

where 2 2
,m F mE v k         is the CNT electronic spectrum. When a SOC is 

incorporated in the Hamiltonian H , the SOC mediated by CNT curvature which take the simplest 

form in CNT coordinate as: 
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0 0 1 1 2 22 2 ( ),i i
soH S S i S e S e 

    
                                (6) 

where 0  is identical matrix, S S iS    , 2 / d  , 0 hC 


. The electron spin 

operators yx i   are defined as ,2 

  m

m
m aa 


  m

m
m aa2 . In Eq. (6), the SO 

constants are proportional to CNT curvature, 0 0( / ) cos3d   , 1,2 1,2 / d  , 

1 0.19   meV nm , 0 1/ 4.5   , 2 1/ 1.4    , / 2  . We take into account that 

0, , , , 1,k m k m    2, , , , 0,ik m e k m     and 

2 2
1 ,, , , , /m mk m k m k       . Here ( )   corresponds to conduction (valence) 

band. 

 

PROJECTION OPERATOR TECHNIQUE 

 

When a polarized electromagnetic radiation with angular frequency   is applied along the 

z  axis, the absorption power ( )absP   delivered to the system is given by 

 2
0( ) ( / 2) Re ( ) ,absP H                                                 (7) 

here “Re” means “the real part of” and the electron spin susceptibility (ESS) ( )   is given, in the 

Kubo formalism, as 

 1
( ) ( ) 1 ( )

z

m m z
mz

e
f E f E



  




  



     
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, , , , , , , , ( ) ,eprk m k m k m k m                                 (8) 

where ( )mf E  is the Fermi-Dirac distribution function for the electron state 
, ,

CNT
k m  . It is 

convenient to write the expression of , , ( ) , ,k m t k m     in the second quantization 

formalism as  ( ), , ( ) , , ( ) ,e
m mk m t k m Tr a a t   

       where ( )t  on the right hand side 

is a second quantized operator. Following Kawabata,4 we define two projection operators P  and 

Q  as      

( , )
,

( , )
m m

m m

X Y
P Y

X



 

 
  

  
( , )

,
( , ) m m

m m

Y
Q Y X

X





  
  

                           (9) 

with m m m mX a a
    . We easily see that P  and Q  satisfy the condition imposed on 

projection operators,   PP2 ,  QQ2  and 

0),)1(())1(,(   YPXPYPXQ . We consider the equation of motion as below 

( , ( ))
( ) .

( , )
m m

m m

X t
t

X




  


  

                                                  (10) 

We separate mmX 
~

 into two parts, parallel and orthogonal to mmX 
~

. Then we obtain from 

Eq. (10) 

0

(exp( ) , ) ((1 ) , ( ))( )
( ) ,

( , ) ( , )
m m m m m m

m m m m

iLt X K X td t
i t

dt X X

 
 
       


     

 
    


 

,
),(

)~,(

),(

),
~

(
0







 






mm

mm

mm

mm

X

X

X

X
i                                        (11) 

where m m m mX iLX     and (1 )m m m mK Q X      .  
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Next we separate ( )t  into two parts, parallel and orthogonal to  , and using the useful 

relations 0 ,fL      0,fQ L     ( ) 0,f m mL Q X    since P     , from Eq. (11) it 

follows that m mK   and   are orthogonal to each other, i.e.,  ( , ) 0Q    . Then we obtain  

0 0

( )
( ) ( ) ( ),

epr
tepr epr eprd t

i t d t
dt

   
  


                                  (12) 

where ( ) ( , ( )) / ( , ).epr
m m m m m mt K R t X           We obtain the ESS as below 

2

0

( )( ) ( )
( ) ,

( ) ( )
m mm m

epr
m m m

f E f E

E E i i


 

  
   


   




   


                       (13) 

We see the coherent scattering factor  , call the line-profile formula, gives characteristics of 

the system because it is affected by the resonance mechanism. The lowest-order approximation of the 

line-profile is given as follows:  

2 4

1 1 3

( ) ( )1
( ) (1 ( ))

( )
epr m m m m

m
m j jm m

Aj Aj
f E

j j 

 
    

     
   

      

          
   

 
 

* *2 4

1 3

( ) ( )
( ) .m m m m

m
j j

Aj Aj
f E

j j

 
   
     

  
 

 
      

 
 

  (14) 

Eq. (14) is similar to Sawaki’s result,13 which is based on the Stark ladder representation. 

However, our formula uses more terms for expressing the Fermi-Dirac distribution. We consider the 

term ( ) ( ) ( ),epr epr epriS W       where the line-shift spectra is ( ) Im ( )epr eprS       , and 
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the line-width is ( ) Re ( )epr eprW       . We apply this approximate formula to the real system 

for demonstration, we obtain absorption power as: 

0 2 2

0

( ) ( ) ( )1
( ) ,

( ) ( )

epr
m m

abs m
epr epr

z

W f E f E
P dE

S W


 

    


  


  

   
        

                     (15) 

The absorption power is described by the Lorentzian form. Fig. 2 shows the relative frequency 

dependence of the absorption power, for the spectrum of the CNT at 150, 200, 250, and 300 K. From 

the absorption power, we can see the broadening effect near the resonance peak, which exhibits 

increase as the temperature increases. In Fig. 3, the temperature dependence of line-width compare 

with experimental data of Salvetat et al.10  

 

Figure 2. The Relative frequency dependence of the absorption power 0( )absP    curves of EPR 

at 150, 200, 250, and 300 K in the CNT at a frequency of 9.49 GHz. 
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Figure 3. The temperature dependence of the line-width in the presence of an external radiation at a 

frequency of  9.49 GHz. 

 

 

CONCLUSIONS 

 

Using Kawabata’s POT, in the CNT, we derived the line-profile formulas that show the relative 

frequency dependence of the absorption power and the temperature dependence of the line-width. We 

strictly used the commutation relation of annihilation and creation operators with using the Kubo 

identity. From the absorption power, on the order of 150, 200, 250, and 300 K, we can see the 

broadening effect of absorption power near the resonance peak, which exhibits a small increase as the 

temperature increase in the high-temperature region (T>200 K). The line-width (the inverse of the 

spin relaxation) monotonically increases with increasing temperature (T>200 K) due to the 
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interaction of electrons with acoustic phonons. The ESR scattering effect is little affected in low-

temperature region (T<200 K) because there is no correlation between the resonance field and Fermi-

Dirac distribution function. The line-width obtained with POT agrees with the experimental result in 

low-temperature region. We conclude that the calculation process presented in this work is useful for 

studying the ESR in the CNT. 
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