• 제목/요약/키워드: Fermented Ginseng

검색결과 249건 처리시간 0.026초

Comparison Study of White Ginseng, Red Ginseng, and fermented Red Ginseng on the Protective Effect of LPS-induced Inflammation in RAW 264.7 Cells (RAW 264.7 세포에서 LPS에 의해 유도된 염증에 대한 백삼, 홍삼, 발효홍삼의 항염효과에 대한 비교 연구)

  • Hyun, Mee-Sun;Hur, Jung-Mu;Shin, Yong-Seo;Song, Bong-Joon;Mun, Yeun-Ja;Woo, Won-Hong
    • Journal of Applied Biological Chemistry
    • /
    • 제52권1호
    • /
    • pp.21-27
    • /
    • 2009
  • Red ginseng (RG) and fermented red ginseng (FRG) are produced from ginseng (GS) via certain biological processes. The main difference between three ginsengs is the composition of ginsenosides known as major metabolites having several biological activities. The concentration of the metabolites has been known to be dependent on the methods which make RG and FRG In this study, we investigated the effects of WG, RG and FRG on the productions of inflammatory proteins (NF-${\kappa}B$, iNOS, COX-2) and cytokines (TNF-$\alpha$, INF-$\gamma$) in LPS-stimulated RAW 264.7 cells. The levels of NO production and iNOS expression were suppressed by the treatment of white ginseng (WG), RG and FRG in LPS-stimulated cells. Also, the production of TNF-$\alpha$ and INF-$\gamma$ was decreased in the cells by all of them. It was indicated that the inhibition of NF-${\kappa}B$ activation in LPS-stimulated cells treated with three kinds of ginsengs was resulted from the suppression of the level of COX-2 expression and the phosphorylation of IkB by LPS. The present study indicated that RC showed the best biological activity among them and FRG was better than WG. The better activity of RG on the inhibition of NO production is considered to be caused by the difference of ginsenoside composition produced during their preparations. In order to elucidate the mechanism, animal test should be performed with three ginsengs.

Changes in Platycoside Components and Antimicrobial Activities of Bronchus Disease-Inducing Bacteria of Fermented Platycodon grandiflorum Root by Lactic Acid Bacteria (젖산발효 처리에 의한 도라지의 Platycosides 조성 및 호흡기질환 유발세균에 대한 항균 활성 변화)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Saet Byeol;Park, Myeong Hee;Park, Shin Young;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제45권7호
    • /
    • pp.1017-1025
    • /
    • 2016
  • This study was performed in order to investigate changes in platycosides, as well as antimicrobial activities of bronchus diseases-inducing bacteria (Corynebacterium diphtheriae, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pyogenes) of Platycodon grandiflorum root (PGR) fermented by lactic acid bacteria (Leuconostoc mesenteroides N12-4, Leuc. mesenteroides N58-5, Lactobacillus plantarum N76-10, L. plantarum N56-12, Lactobacillus brevis N70-9, and L. brevis E3-8). Growth of L. plantarum on PGR was most active during lactic acid fermentation using different strains. Total platycoside, platycoside E, platycodin A, polygalacin $D_2$, polygalacin D, and diapioplatyco-side E contents of PGR fermented for 96 h at $37^{\circ}C$ by Leuc. mesenteroides and L. plantarum increased, whereas contents of platycodin D and platycodin $D_3$ were reduced. The antimicrobial activity on PGR fermented by L. plantarum N56-12 exhibited strong microbial proliferation for all four kinds of bronchus disease-inducing bacteria and was higher than that of non-fermented PGR extract. MIC of fermented PGR extract by L. plantarum N56-12 on C. diphtheriae, K. pneumoniae, S. aureus, and S. pyogenes were 45, 10, 50, and 25 mg/mL, respectively. Thus, this result shows that the antimicrobial activities of bronchus disease-inducing bacteria and platycoside content of PGR by L. plantarum N56-12 were higher than that of non-fermented PGR extract.

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts

  • Irfan, Muhammad;Lee, Yuan Yee;Lee, Ki-Ja;Kim, Sung Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.387-395
    • /
    • 2022
  • Background: Fermentation may alter the bioavailability of certain compounds, which may affect their efficacy and pharmacological responses. This study investigated the antiplatelet effects of red ginseng extract (RGE) and fermented red ginseng extract (FRG). Methods: A rodent model was used to evaluate the antiplatelet and antithrombotic effects of the extracts. Rats were orally fed with human equivalent doses of the extracts for 1 week and examined for various signaling pathways using standard in vivo and ex vivo techniques. Light transmission aggregometry was performed, and calcium mobilization, dense granule secretion, integrin αIIbβ3-mediated signaling molecules, cyclic nucleotide signaling events, and various protein molecules were evaluated ex vivo in collagen-stimulated washed platelets. Furthermore, antithrombotic properties were evaluated using a standard acute pulmonary thromboembolism model, and the effects on hemostasis were investigated using rat and mice models. Results: Both RGE and FRG significantly inhibited platelet aggregation, calcium mobilization, and dense granule secretion along with integrin-mediated fibrinogen binding and fibrinogen adhesion. cAMP levels were found to be elevated in RGE-treated rat platelets. Ginseng extracts did not exert any effect on prothrombin time and activated partial thromboplastin time. RGE-treated mice showed significantly better survival under thrombosis than FRG-treated mice, with no effects on hemostasis, whereas FRG-treated mice exhibited a slight increment in bleeding time. Conclusion: Both extracts, especially RGE, are remarkable supplements to maintain cardiovascular health and are potential candidates for the treatment and prevention of platelet-related cardiovascular disorders.

Combined Effect of Fermentation and Extrusion Process on Antioxidant Properties of Sangmaksan (압출성형 공정을 이용한 발효 생맥산의 항산화 활성)

  • Yang, Hye-Jin;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • 제41권5호
    • /
    • pp.566-571
    • /
    • 2009
  • The principal objective of this study was to use a fermentation and extrusion process in order to improve the antioxidant properties of original Sangmaksan (ES), containing maekmoondong, omija, and white ginseng. The antioxidant activities of fermented Sangmaksan prepared with different types of ginseng [white (FSW), red (FSR), and extruded white (FSE)], were investigated. The white ginseng powder was extruded at 20% moisture content and $120^{\circ}C$ of the maximum process temperature at the barrel. The antioxidant properties of Sangmaksan were increased after fermentation. Interestingly, the fermented Sangmaksan containing the extruded white ginseng evidenced more potent antioxidant properties than the fermented Sangmaksan containing white ginseng. The content of total phenolic compounds, DPPH-radical scavenging activity, acidic polysaccharide, reducing power, and total anthocyanin were highest with FSR, followed by FSE, FSW and ES, respectively. Additionally, superoxide dismutase-like activity and total flavonoid contents were highest in the fermented Sangmaksan containing extruded white ginseng. In conclusion, it can be asserted that the fermentation and extrusion process utilized in this study may prove to be an effective new process for the production of high-quality Sangmaksan.

Antioxidative Capacity and Quality Characteristics of Yanggaeng using Fermented Red Ginseng for the Elderly (발효홍삼 농축액을 이용한 노인용 기능성 간식(양갱)의 항산화성 및 품질특성)

  • Kim, Ae-Jung;Han, Myung-Rhun;Lee, Soo-Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • 제25권1호
    • /
    • pp.83-89
    • /
    • 2012
  • In this study red ginseng was extracted with ethanol and then fermented by yeasts including Lactobacillus casei and Bifidobacterium longum. Fermented red ginseng extracts(FRGE) were found to be more effective antioxidants in vitro with regards to 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging activity than red ginseng extracts(RGE). In FRGE, the contents of ginsenosides $Rb_1$, $-Rb_2$ and -Rc were much lower than in RGE, however, the contents of ginsenosides 20(S)$-Rg_3$, 20(R)$-Rg_3$ and compound K were higher than RGE. FRGE was added to Yanggaeng(0, 5, 10, 15, 20%), and physicochemical and sensory evaluations of the Yanggaeng were conducted. The L and b values of Yanggaeng with added FRGE were decreased by increasing the ratio of FRGE, while the a value was increased. Sensory evaluations for, taste, color, flavor, texture and overall acceptability of Yanggaeng with addition of FRGE (10%) were applicable for improving the Yanggaeng product.

Changes of Ginsenoside Content by Mushroom Mycelial Fermentation in Red Ginseng Extract

  • Bae, Song-Hwan;Lee, Hyun-Sun;Kim, Mi-Ryung;Kim, Sun-Young;Kim, Jin-Man;Suh, Hyung-Joo
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.235-242
    • /
    • 2011
  • To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng extract (RGE), mushroom mycelia were used for the fermentation of RGE. After fermentation, total sugar contents and polyohenol contents of the RGEs fermented with various mushrooms were not a significant increase between RGE and the ferments. But uronic acid content was relatively higher in the fermented RGEs cultured with Lentus edodes (2155.6 ${\mu}g/mL$), Phelllinus linteus (1690.9 ${\mu}g/mL$) and Inonotus obliquus 26137 and 26147 (1549.5 and 1670.7 ${\mu}g/mL$) compared to the RGE (1307.1 ${\mu}g/mL$). The RGEs fermented by Ph. linteus, Cordyceps militaris, and Grifola frondosa showed particularly high levels of total ginsenosides (20018.1, 17501.6, and 16267.0 ${\mu}g/mL$, respectively). The ferments with C. militaris (6974.2 ${\mu}g/mL$), Ph. linteus (9109.2 ${\mu}g/mL$), and G. frondosa (7023.0 ${\mu}g/mL$) also showed high levels of metabolites (sum of compound K, $Rh_1$, $Rg_5$, $Rk_1$, $Rg_3$, and $Rg_2$) compared to RGE (3615.9 ${\mu}g/mL$). Among four different RGE concentrations examined, a 20 brix concentration of RGE was favorable for the fermentation of Ph. linteus. Maximum biotransformation of ginsneoside metabolites (9395.5 ${\mu}g/mL$) was obtained after 5 days fermentation with Ph. linteus. Maximum mycelial growth of 2.6 mg/mL was achieved at 9 days, in which growth was not significantly different during 5 to 9 days fermentation. During fermentation of RGE by Ph. linteus in a 7 L fermenter, $Rg_3$, $Rg_5$, and $Rk_1$ contents showed maximum concentrations after 5 days similar to flask fermentation. These results confirm that fermentation with Ph. linteus is very useful for preparing minor ginsenoside metabolites while being safe for foods.

A Study on Habak-kimchi added Fresh Ginseng (수삼을 첨가한 나박김치에 관한 연구)

  • 임희정;신승미;최윤정;권혜순;염초애
    • Korean journal of food and cookery science
    • /
    • 제12권3호
    • /
    • pp.346-352
    • /
    • 1996
  • This study was conducted to investigate the effect of fresh ginseng on the physicochemical, microbiological and sensory properties of Nabak-kimchi during 33 day fermentation. Nabak-kimchi with the various levels (0, 2, 4, 6%) of fresh ginseng were fermented at 4$^{\circ}C$. During the fermentation, pH was lowered in all Nabak-kimchi samples and pH of Nabak-kimchi added fresh ginseng was a little lower than that of Nabak-kimchi without fresh ginseng. Acidity increased continuously during the entire fermentation. Saltiness was maintained at 1.60-1.67% levels during the whole fermentation. Total vitamin C contents increased drastically on the first day of fermentation and decreased after the first day and then increased during 21-24 day fermentation. Total bacteria increased rapidly at the beginning of fermentation and reached its maximum number on 6th day offermentation and then decreased slowly. Total bacteria of Nabak-kimchi added fresh ginseng was highly main-tained during the entire fermentation periods. As a result of the sensory evaluation, Nabak-kimchi added 4% fresh ginseng was the most palatable one.

  • PDF

Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.1-15
    • /
    • 2012
  • The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides $Rg_3$, $Rg_5$, and $Rk_1$ by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside $Rh_1$, proto- and panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.