• Title/Summary/Keyword: Fermented Artemisia

Search Result 28, Processing Time 0.024 seconds

Antioxidant Activity Study of Artemisia argyi H. Extract Fermented with Lactic Acid Bacteria (젖산균으로 발효한 섬애쑥(Artemisia argyi H.) 추출물의 항산화 활성 연구)

  • Ji Hyun Kim;Nan Kyung Kim;Ah Young Lee;Weon Taek Seo;Hyun Young Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Objectives: In this study, we investigated physicochemical characteristics and antioxidant activity of Artemisia argyi H. fermented with lactic acid bacteria. Methods: The A. argyi water extract was fermented using lactic acid bacteria isolated from kimchi at 30℃ for 96 h. To evaluate the physicochemical characteristics, we investigated pH, total acidity, viable cells, free sugars, free organic acids, and free amino acids contents during fermentation. In addition, we examined antioxidant activity of fermented Artemisia argyi H. by measurement of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazinyl (DPPH) and 2,2'-azubi-bus-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) scavenging activities. Results: During fermentation time, pH of fermented A. argyi was decreased from 4.57 to 3.22, and total acidity was increased from 0.39% to 1.63%. The number of lactic acid bacteria fermented A. argyi was increased from 1.28×107 CFU/ml to 3.75×108 CFU/ml during fermentation time. The free sugars of fermented A. argyi were confirmed glucose and sucrose. In addition, the organic acid content of fermented A. argyi was the highest in oxalic acid and lactic acid. In the composition of free amino acids, content of ornithine increased from 4.4 mg/100 g to 18.8 mg/100 g compared with non-fermented A. argyi. Furthermore, DPPH and ABTS+ radical scavenging activities of fermented A. argyi increased in a dose-dependent manner. Conclusions: In conclusion, our data suggest that lactic acid fermentation of A. argyi could be used as a functional food for antioxidants.

Biological Activities of Fermented Mugworts and Their Effects on Lipid Metabolism in Rats (발효쑥의 생리활성 및 흰쥐의 지질대사에 미치는 영향)

  • Jung, Soon-Mo;Song, Hyo-Nam
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.3
    • /
    • pp.356-362
    • /
    • 2009
  • The objective of this study was to investigate the biological activities of fermented mugworts and their effects on the lipid metabolism in hyperlipidemia-induced rats. The proximate compositions of two kinds of mugwort, Artemisia capillaris Thumberg and Artemisiae asiaticae Nakai, were compared before and after fermentation. In both types of mugwort crude protein and amino nitrogen contents markedly increased with fermentation. Thrombolytic activity determined from the size of the clear zone on a fibrin plate was higher for the Artemisiae asiaticae Nakai, especially in the fermented sample. Antioxidative activity according to DPPH(1,1-diphenyl-2-picrylhydrazyl) radical scavenging effects was higher for Artemisia capillaris Thumberg but no significant differences were found between the samples after fermentation. The body weights of hyperlipidemia-induced rats that were fed the mugworts for 4 weeks were lower than those of the control group. In all the mugwort-fed rats serum total cholesterol and LDL-cholesterol levels remarkably decreased. Furthermore the fermented mugworts were found to be more effective at decreasing triglyceride (TG) levels. It is also noteworthy that the highest HDL-cholesterol levels were observed in the rats treated with the fermented Artemisiae asiaticae Nakai. And fatty liver weights were higher in the rats fed Artemisia capillaris Thumberg. In conclusion the feeding of fermented Artemisiae asiaticae Nakai was effective for increasing thrombolytic activity and HDL-cholesterol levels as well as reducing TG levels in rats.

  • PDF

Anti-oxidant and immune enhancement effects of Artemisia argyi H. fermented with lactic acid bacteria

  • Ji Yun Lee;Ji Hyun Kim;Ji Myung Choi;Hyemee Kim;Weon Taek Seo;Eun Ju Cho;Hyun Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.492-502
    • /
    • 2023
  • This study investigated the antioxidant and immune enhancement activities of Artemisia argyi H. fermented by Lactobacillus plantarum. The fermented A. argyi H. ethanol extract increased scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl (·OH), and superoxide (O2-) radicals. Particularly, the ethanol extract of fermented A. argyi H. exhibited higher ·OH and O2- radical scavenging activities, compared with DPPH and ABTS+ radical scavenging activities. To evaluate the immune enhancement effects of the fermented A. argyi H., mice were fed a normal diet supplemented the fermented A. argyi H. at concentrations of 1%, 2%, and 5%, respectively. The supplementation of fermented A. argyi H. dose-dependently increased splenocyte proliferation. In addition, mice fed with 5% fermented A. argyi H. showed enhanced proliferation of T-cells and B-cells, along with increased levels of interferon-γ, interleukin-10, and tumor necrosis factor-α, compared to the normal group. Furthermore, mice fed with fermented A. argyi H. exhibited an increase in prominent probiotics such as Akkermansia muciniphila and Lactobacillus in gut microbiota, compared to the normal group. This study suggests that fermented A. argyi H. with Lactobacillus plantarum could be used as a dietary antioxidant and immune enhancement agent.

Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice

  • Joh, Eun-Ha;Trinh, Hien-Trung;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.308-315
    • /
    • 2010
  • Essential oil-excluded Artemisia princeps Pamp var Ssajuarissuk (AP) was fermented with Lactobacillus brevis K-1, which was isolated from cabbage Kimchi, and the anti-inflammatory effects of AP and fermented AP (FAP) on lipopolysaccharide (LPS)-induced inflammatory response in peritoneal macrophages were investigated. AP and FAP inhibited LPS-induced TNF-$\alpha$, IL-$1{\beta}$, COX-2, iNOS and COX-2 expression, as well as NF-${\kappa}B$ activation. AP and FAP also reduced ear thickness, inflammatory cytokine (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced dermatitis in mice. Furthermore, AP and FAP also reduced exudate volume, cell number, protein amount, inflammatory cytokines (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation in carrageenan-induced air pouch inflammation in mice. The inhibitory effects of FAP were more potent than those of non-fermented AP. Based on these findings, we propose that FAP can improve inflammatory diseases, such as dermatitis, by inhibiting the NF-${\kappa}B$ pathway.

Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells

  • Saba, Evelyn;Oh, Mi Ju;Lee, Yuan Yee;Kwak, Dongmi;Kim, Suk;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against ${\alpha}$-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At $100{\mu}g/mL$, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.

Hepatoprotective Effect of Fermented Artemisia princeps PAMPANINI by Lactic Acid Bacteria (발효강화쑥의 간장해 보호효과)

  • Choi, Hyuck-Jae;Kim, Eun-Jin;Han, Myung-Joo;Baek, Nam-In;Kim, Dong-Hyun;Jung, Hae-Gon;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.3 s.150
    • /
    • pp.245-253
    • /
    • 2007
  • Artemisia princeps PAMPANINI has been used in traditional medicine of the treatment of inflammatory, liver dysfunction and order disorder in the far east countries including Korea. The present study was carried out to investigate the hepatoprotective effects of ethanol extract of Artemisia princeps (AP) and its fermented agents (AP-F) by lactic acid bacteria derived from human intestinal bacteria on liver injured rat induced by $CCl_4$ and d-galactosamine. Hepatoprotective activity was monitored by estimating serum ALT, AST, ALP, LDH, superoxide dismutase (SOD), glutathione redeuctase (GR) and glutathione peroxidase (Gpx) activities in the liver injured by hepatotoxin. Pretreating rats with AP or AP-F at the same dosage regimen significantly suppressed the acute elevation of serum transaminase, ALP, LDH and GR activities, and significantly increased the lowering of blood SOD and GR activites induced by hepatoxin. Based on these findings, it is presumed that AP and APF may have the hepatoprotective effect on $CCl_4$ and d-galactosamine-induced hepatotoxicity rat.

Lactic Acid Bacteria Increase Antiallergic Effect of Artemisia princeps Pampanini SS-1

  • Lee, Seung-Hoon;Shin, Yong-Wook;Bae, Eun-Ah;Lee, Bo-Mi;Min, Sung-Won;Baek, Nam-In;Chung, Hae-Gon;Kim, Nam-Jae;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.752-756
    • /
    • 2006
  • Artemisia princeps Pampanini, which is called Ssajuarissuk in Korean (SS-1), was fermented with lactic acid bacteria (LAB) and their passive cutaneous anaphylaxis reaction-inhibitory activity was investigated. Of these fermented agents, SS-1 extract fermented with Bifidobacterium infantis K-525 (F-SS-1) most effectively inhibited the release of ${\beta}$-hexosamindase from RBL-2H3 cells induced IgE. In IgE-induced RBL-2H3 cells, F-SS-1 inhibited proinflammatory cytokines IL-6 and $TNF-{\alpha}$ mRNA expression. Oral administration of SS-1 and F-SS-1 to mice inhibited passive cutaneous anaphylaxis (PCA) reaction induced by IgE and scratching behaviors induced by compound 48/80. The inhibitory activity of F-SS-1 against scratching behaviors was more effective than that of SS-1. These findings suggest that the fermentation of SS-1 with LAB can increase its antiallergic activity.

Antioxidant and Antibacterial Activities of Lactobacillus-fermented Artemisia annua L. as a Potential Fish Feed Additive (양어 사료첨가제로서의 유산균 발효 개똥쑥의 항산화 및 항균활성)

  • Lee, Ah-Ran;Niu, Kai-Min;Kang, Su-Kyung;Han, Sung-Gu;Lee, Bong-Joo;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.652-660
    • /
    • 2017
  • Fermented medical herbs using Lactobacilli have attracted significant attention due to their enhanced biological activities. A traditional medicinal plant, Artemisia annua L., was fermented using a probiotic strain, L. plantarum SK3494. The strain was isolated from Artemisia princeps var. orientalis and molecularly identified through sequence similarities and phylogenetic tree analysis. The antioxidant activity of L. plantarum-fermented A. annua L. (LFA) was determined using the DPPH free radical scavenging assay. Cellular antioxidant activity of LFA was examined using the superoxide radical reduction assay in MAT-C cells. Total polyphenol contents (TPC) and flavonoid contents (TFC) of LFA were determined. The antibacterial activity of LFA against fish pathogens was also determined in this study. The viable cell number (9.38 log10 CFU/ml) and pH (4.1) results showed good adaptive ability of the selected strain during fermentation. LFA was found to have enhanced antioxidant activity compared to non-fermented A. annua L. (NFA) based on the DPPH assay. Cellular antioxidant activity was present in both LFA and NFA. After 24 hr and 48 hr of fermentation, the LFA also showed antibacterial activities against fish pathogens Photobacterium damselae subsp. damselae and Vibrio ichthyoenteri. These results suggest that L. plantarum-fermented A. annua L. may have potential as a feed additive in aquaculture.

Effect of Fermented Lactic Acid Bacteria on Antiallergic Effect of Artemisia princeps Pampanini

  • Shin Yong-Wook;Bae Eun-Ah;Lee Bo-Mi;Min Sung-Won;Baek Nam-In;Ryu Su-No;Chung Hae-Gon;Kim Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1464-1467
    • /
    • 2006
  • Artemisia princeps Pampanini, which is named as Sajabalssuk (SJ-1) in Korea, was fermented with lactic acid bacteria (LAB), and their antiallergic activities were investigated. When SJ-l was fermented with some LAB isolated from human feces, the inhibition of NO production in RAW264.7 cells and antioxidant activities of SJ-1 were not affected. However, the inhibitory activity of SJ-1 against degranulation of RBL-2H3 cells induced by IgE was increased by LAB fermentation. Among the LAB tested, Bifidobacterium infantis K-525 provided the most potent inhibitory effect of SJ-1 against degranulation of RBL-2H3 cells. SJ-1 extract fermented with B. infantis K-525 (F-SJ-1) potently inhibited the mouse passive cutaneous anaphylaxis reaction induced by IgE with antigen, skin dermatitis induced by 12-O-tetradecanoylphorbol-13-acetate, and scratching behaviors induced by compound 48/80. These inhibitory activities of F-SJ-1 were more potent than those of SJ-1. These findings suggest that the inhibition of SJ-1. extract against IgE-induced allergic diseases, such as rhinitis and asthma, can be enhanced by LAB fermentation.

Extraction of Whitening Agents from Natural Plants and Whitening Effect (천연물에 포함된 미백성분의 추출 및 미백효과)

  • Jin, Yinzhe;Ahn, So Young;Hong, Eun Suk;Li, Guang hua;Kim, Eun-Ki;Row, kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.348-353
    • /
    • 2005
  • The extracts from natural and fermented products such as Artemisia plants, Rhodiola Salientness, fermented soybeans and soybean paste were used to investigate the whitening effect. 10 g of Artemisia plant were added to 300 mL of ethanol and extracted by sonification at room temperature for 3 h. The extract was further partitioned by the equal volume percent in the order of the n-hexane, chloroform and ethyl acetate. 5 g of Rhodiola salientness was also added to 150 mL of methanol and extracted at the room temperature for 12 h. The effluents from a chromatographic column ($3.9{\times}250mm$, $C_{18}$, $15{\mu}m$) were collected and concentrated in two parts. The extraction of fermented soybeans and soybean paste were done by 60% ethanol. In this work, tyrosinase inhibitory activity and melanin inhibitory effect were measured to confirm the whitening effect. The water layer of Artemisia princeps Pampan showed the good inhibitory of antioxidant, while the hexane layer of Artemisia iwayomogi Kitamura and the chloroform layer of Artemisia princeps Pampan had the excellent melanin inhibitory effect. The Rhodiola salientness had the superior whitening effect to the arbutin in in-vivo melanin production ratio assay. However, the fermented soybeans and soybean paste did not show any whitening effect.