• Title/Summary/Keyword: Fermentation conditions

Search Result 1,148, Processing Time 0.035 seconds

Comparison of antioxidant activities of aronia vinegar (Aronia melanocarpa) accroding to fermentation time (발효시간에 따른 아로니아 식초의 항산화 활성 비교)

  • Nan-Hee Lee;Hyeock-Soon Jang;Ung-Kyu Choi
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.991-998
    • /
    • 2023
  • This study investigated the antioxidant activity of Aronia vinegar during acetic acid fermentation. As a result of acetic acid fermentation at 30℃ for 30 days with different initial ethanol contents, it was found that adjusting the initial ethanol content to 6% was optimal, at which 4.1% of acetic acid was produced. During fermentation under optimal conditions, the total polyphenol content decreased, but the content was higher than that of the control brown rice vinegar but lower than that of grape vinegar. The contents of flavonoids and tannins showed a decreasing pattern as acetic acid fermentation progressed, but they were higher than those of brown rice vinegar and grape vinegar. The DPPH scavenging activity was higher than 95.7% in all test groups, indicating that it would be possible to produce high-quality Aronia vinegar using the acetic acid fermentation method.

Optimization of the Acetic Acid Fermentation Condition of Apple Juice (사과식초 제조를 위한 사과주스의 초산발효 최적화)

  • Kang, Bok-Hee;Shin, Eun-Jeong;Lee, Sang-Han;Lee, Dong-Sun;Hur, Sang-Sun;Shin, Kee-Sun;Kim, Seong-Ho;Son, Seok-Min;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.980-985
    • /
    • 2011
  • This study was conducted to determine the acetic-acid fermentation properties of apple juice (initial alcohol content, apple juice concentration, acetic-acid content, and inoculum size) in flask scale. At the acetic-acid fermentation of apple juice with 3, 5, 7, and 9% initial alcohol content, the maximum acidity after 10-day fermentation was 5.88% when the initial alcohol content was 5%. The acetic-acid fermentation did not proceed normally when the initial alcohol content was 9%. When the initial Brix was $1^{\circ}$, the acidity gradually increased, and the acidity after 12-day acetic-acid fermentation was 4.48%. Above 4% acidity was attained faster when the apple juice concentration was 5 and 10 $^{\circ}Brix$ than when it was 1 and 14 $^{\circ}Brix$. When the initial acidity was 1% or above (0.3, 0.5, 1.0, and 2.0%), the acetic-acid fermentation proceeded normally. The acetic-acid fermentation also proceeded normally when the inoculum sizes were 10 and 15%, and the acidity after eight-day acetic-acid fermentation was 5.60 and 6.05%, respectively. Therefore, the following were considered the optimal acetic-acid fermentation conditions for apple cider vinegar: 5% initial alcohol content, 5 $^{\circ}Brix$ or above apple juice concentration, 1.0% or above initial acidity, and 10% or above inoculum size. Apple cider vinegar with above 5% acidity can be produced within 48 h under the following acetic-acid fermentation conditions: 7% initial alcohol content, about 1% initial acidity, and 10% inoculum volume at $30^{\circ}C$, 30 rpm, and 1.0 vvm, using 14 $^{\circ}Brix$ apple juice in a mini-jar fermentor as a pre-step for industrial-scale adaptation.

Effect of Fermentation Temperature on the Physicochemical Properties of Mustard Leaf(Brassica juncea) Kimchi during Various Storage Days (발효숙성온도를 달리한 갓 김치의 저장중 이화학적 특성 변화)

  • 박삼수;장명숙;이규환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.752-757
    • /
    • 1995
  • The effect of fermentation temperature on the changes of pH, acidity, salt content, color and vitamin C of mustard leaf kimchi during various storage days was investigated. The conditions of fermentation temperature were set at $4^{\circ}C$ (sample A) and $20^{\circ}C$ (sample B), and $4^{\circ}C$ after keeping at $20^{\circ}C$ for 12 hours(sample C) and $20^{\circ}C$ for 36 hours(sample D). As the fermentation proceeded, pH of sample stored at low temperature(sample A) was drop ped gradually from initial pH of 5.24 but there was great pH drop in the sample stored at high temperature(sample B, D). The salt content of the sample B at high temperature increased remarkably, and then the values showed D > A > C. The Humter values of L and a increased at the optimum ripening period, the higher the initial fermentation temperature(B) and the later the initial fermentation time at $20^{\circ}C$ those values, then decreased. The Hunter value of b constantly increased until day of 108. As fermentation time passed, the content of total vitamin C decreased to the range of 9.0mg% to 14.0mg% up to 24 days of fermentation, and at the optimum ripening period, it increased to the range of 14.0mg% to 22.0mg%, and at the fermentation period(until day 108), it decreased gradually.

  • PDF

Establishment of Producing Conditions of Fermentation Feed for Swine (양돈용 발효사료의 발효조건 설정 연구)

  • Cho, S.B.;Kim, D.W.;Yang, S.H.;Park, K.H.;Choi, D.Y.;Yoo, Y.H.;Hwang, O.H.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.137-144
    • /
    • 2012
  • This study was conducted to determine the effect of feed additives including probiotics, moisture and feed ingredients and the effect of fermented feed on digestibility and volatile fatty acid (VFA) level in finishing pigs. Feed was mixed with microbials including Saccharomyces, Lactobacillus, Enterococcus and Pediococcus together with different levels of probiotics, 0.25, 0.5, 1, 2, 3%. Addition of probiotics showed improved fermentation rate after 48 h incubation. To determine the optimal moisture level for fermentation, different levels of water, 30, 40, 50 and 60%, were added into the feed. Fermentation rate of feed with 40~50% moisture level was higher than that from 60% level at 60 h post-fermentation. In vitro fermentation rate of feed ingredients was analyzed by comparing VFA levels. Beet pulp and tapioca showed higher fermentation rate compare to other ingredients including canola meal or rapeseed meal. To determine the effect of administration of fermented feed In vivo, feces from finishing pigs were analyzed. Finishing pigs administrated with fermented feed showed improved digestibility and higher volatile fatty acid (VFA) level. In conclusion, results from the current study indicate that 40~50% of moisture with addition of beet pulp and tapioca in feed is optimal condition for fermentation. Furthermore, our data suggest that fermentation of feed can improve the feed quality and digestibility, thereby provide more nutrient in finishing pigs.

Two-Stage Biological Hydrogen Production by Rhodopseudomonas palustris P4 (Rhodopseudomonas palustris P4에 의한 이 단계(Two-stage) 생물학적 수소생산)

  • Yun, Young-Su;In, Sun-Kyoung;Baek, Jin-Sook;Park, Sung-Hoon;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.315-323
    • /
    • 2005
  • The integrated or the two-stage (dark anaerobic and photosynthetic) fermentation processes were compared for the hydrogen production using purple non-sulfur photosynthetic bacteria, Rhodopseudomonas palustris P4. Cell growth, pH changes and organic acids and bacteriochlorophyll contents were monitored during the processes. Culture broth of Rps. palustris P4 exhibited dark-red during the photosynthetic culture condition, while yellow under the anaerobic condition without light. Rps. palustris P4 grown at the photosynthetic condition evolved 0.38 and 1.33 ml $H_2$/mg-dcw during the dark and the light fermentation, respectively, which were totally 1.71 ml $H_2$/mg-dcw at the two-stage fermentation. The rate of hydrogen production using Rps. palustris P4 grown under the dark anaerobic condition was 2.76 ml $H_2$/mg-dcw which consisted of 0.46 and 2.30 ml $H_2$/mg-dcw from the dark and the photosynthetic fermentation processes, respectively. Rps. palustris P4 grown under dark anaerobic conditions produced $H_2$ 1.6 times higher than that of grown under the photosynthetic condition. However, total fermentation period of the former was 1.5 times slower than that of the latter, because the induced time of hydrogen production during the photosynthetic fermentation was 96 and 24 hours when the seed culture was the dark anaerobic and photosynthetic, respectively. The integrated fermentation process by Rps. palustris P4 produced 0.52 ml $H_2$/mg-dcw(1.01 mol $H_2$/mol glucose), which was 20% of the two-stage fermentation.

Monitoring on Alcohol Fermentation Properties of Apple Juice for Apple Vinegar (사과식초 제조를 위한 사과주스의 알코올발효 특성 모니터링)

  • Shin, Eun-Jeong;Kang, Bok-Hee;Lee, Sang-Han;Lee, Dong-Sun;Hur, Sang-Sun;Shin, Kee-Sun;Ki, Seong-Ho;Son, Seok-Min;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.986-992
    • /
    • 2011
  • The alcohol fermentation of apple juice was optimized as a preliminary study for the production of natural apple cider vinegar. To gain an optimal fermentation yield, a central composite design was used to investigate the effects of the independent variables [initial Brix (12/14/16/18/20, $X_1$), fermentation time(48/54/60/66/72h, $X_2$), and fermentation temperature(24/26/28/30/$32^{\circ}C$, $X_3$)] on the dependent variables (alcohol content, reducing sugar, Brix, acidity). The alcohol content was 3.4-6.4%, the reducing sugar was 1.93-6.24%, and the Brix was $6.1-13.8^{\circ}$. The alcohol content was mainly affected by the fermentation temperature and increased along with the fermentation time and temperature. The amount of the reducing sugar was significantly affected by the initial Brix and fermentation temperature. The optimal conditions for the alcohol content were found to be 15.22 initial Brix, 64.97 h fermentation time, and $31.56^{\circ}C$ temperature.

Optimization of Peach Wine Fermentation by Response Surface Methodology (반응표면분석에 의한 복숭아주 발효 최적화)

  • Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.586-591
    • /
    • 2015
  • To prepare peach wine using peach juice, fermentation properties were monitored, and fermentation conditions (initial sugar concentration, temperature, and time) were optimized by a response surface methodology. Alcohol content for peach wine fermentation ranged from 3.4~9.2% [$R^2=0.9229$ (P<0.01)] and 8.54% (maximum value) at $18.73^{\circ}Brix$, $16.81^{\circ}C$, and 12.99 day. Acidity ranged from 0.30~0.74%, and 0.25% (minimum value) at $15.11^{\circ}Brix$, $17.09^{\circ}C$, and 13.61 day. Residual sugar concentration was $6.67^{\circ}Brix$ (maximum residual sugar content) at $17.79^{\circ}Brix$, $20.63^{\circ}C$, and 3.37 day. Yellow color intensity was 18.92 (maximum Hunter's color b value) at $13.19^{\circ}Brix$, $20.81^{\circ}C$, and 12.81 day. Based on the above study results, optimization conditions for peach wine fermentation were 9 days, below $20^{\circ}C$, and $19^{\circ}Brix$ peach juice.

Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties (이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성)

  • Lee, Su-Seon;Park, Si-Hyang;Kim, Hyeun-A;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.542-550
    • /
    • 2016
  • This study was carried out to investigate the optimal processing conditions for odor removal and maximal antioxidant effects of oyster (Crassostrea gigas) hydrolysate. The optimal hydrolysis conditions were 3.3% neutrase as the protease, $50^{\circ}C$ as the hydrolysis temperature, and 8.3 h as the hydrolysis time. Fish odor of enzymatic oyster hydrolysate was greatly reduced during Saccharomyces cerevisiae fermentation at $24^{\circ}C$ with 0.5% glucose. The protein content of the fermentation product from oyster hydrolysate powder was 25.7%, which contained the major amino acids Glu, Asp, Lys, Arg, Gly, and Ala, whereas Leu, Ala, Phe, Val, and Tau were abundant free amino acids. The important minor minerals were Zn and Fe. Toxicity against Chang cells was not observed in the fermentation product from the oyster hydrolysate up to $200{\mu}g/mL$. The results suggest that fermentation with S. cerevisiae could reduce the fish odor of enzymatic oyster hydrolysate. The hydrolysate has potential application as a food ingredients and nutraceutical.

Characteristics of the Fermentation products of Paecilomyces tenuipes Fermented Using Different Microorganisms (발효 미생물에 따른 누에동충하초 발효산물의 특성)

  • Jo, You-Young;Kweon, Hae-Yong;Kim, Hyun-bok;Ji, Sang-Deok
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • In order to develop fermented silkworm "Dongchunghacho" (Paecilomyces tenuipes) with improved absorption and increased effectiveness, we fermented Dongchunghacho using four kinds of microorganisms, viz., lactic acid bacteria, Bacillus subtilis, Natto bacillus, and yeast. A total of 15 samples were fermented using a combination of microbial inoculation culture and conditions to produce fermentation products. The contents of basic components such as sugar, reducing sugar, protein, total polyphenol, and total flavonoid were examined as well as the antioxidant, tyrosinase inhibitory, and thrombolytic activities of the fermented products were analyzed. We observed that reducing sugar and protein contents decreased in most of the fermented products, but the products fermented using yeast exhibited higher sugar content and, thus, higher sweetness. Total polyphenol content and antioxidant activity did not increase in fermented products compared to non-fermented Dongchunghachos, but total flavonoid content and tyrosinase inhibitory and thrombolytic activities increased by fermentation. In particular, total flavonoid content and tyrosinase inhibitory and thrombolytic activities primarily increased in the products fermented using yeast and lactic acid bacteria. However, it was not possible to confirm the increase in these activities in samples fermented by single fermentation using only yeast. Therefore, we propose that it will be possible to develop fermented food from silkworm Dongchunghacho (P. tenuipes) with excellent health benefits through additional study of multiple fermentation conditions using lactic acid bacteria and yeast.

KINETIC STUDIES OF LACTIC ACID FERMENTATION(PART 1) EFFECT OF MECHANICAL AGITATION ON FERMENTATION (유산균 발효에 관한 동력학적 연구(제1보) 발효에 미치는 기계적 교반의 영향)

  • LEE Keun-Tai;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.155-160
    • /
    • 1979
  • Mechanical agitation in fermentation process enhances the fermentation activity of microbes by means of oxygen supply and frequent collision with substrate. However, the fermentation activity of microaerophilic bacteria is inhibited by the excess oxygen resulted from the mechanical agitation. On this account, a a strain of Lactobacillus bulgarius was cultured to know the inhibition effect of the mechanical agitation and determine the optimum conditions for tile process of lactic acid fermentation. The growth rate of L. bulgaricus and the consumption rate of tile substrate revealed an identical pattern in changes. The two rates were constant in the range of the modified Reynolds number of $1\times10^5\;to\;5\times10^5$ while they showed linear increase in the range of the modified Reynolds number of $1\times10^5\;to\;10\times10^5$. Under the conditions of the modified Reynolds number more than $10\times10^5$, the both rates decreased. At the modified Reynolds number of $10\times10^5$, the maximum specific growth rate and the saturation constant of L. bulgaricus were 0.58/hr and 6.74g/l, respectively.

  • PDF