• Title/Summary/Keyword: Fermentation conditions

Search Result 1,145, Processing Time 0.023 seconds

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju;Jeong, Haeyoung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1047-1053
    • /
    • 2022
  • When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.

Factos affecting the production of butanol and acetone by Clostridium acetobutylicum

  • Gottschalk, G.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.509.2-509
    • /
    • 1986
  • Owing to the growing interest in the production of fuels and chemicals from biomass the well-know butanol-acetone fermentation as carried out by Clostridium acetobutylicum has been intensely studied again in recent years. Several solvent-yielding fermentation processes were established which are operated by using batch cultures or continuous cultures. 1 could be shown that under conditions of phosphate limitation an asporogenous mutant of C. acetobutylicum establishes itself in a chemostat which produces the solvents continuously. Attempts have been made to change the butanol/acetone ratio in favor of butanol production. A corresponding shift of the product spectrum can be achieved by carbon monoxide addition to the head space of the fermentation (B.H. Kim et al., App. Envioron. Microbiol. 48, 764-770 1984) or by iron limitation. Progress has been made in understanding the mechanism underlying the shift from acid to solvent prodcction. Experimental results are in agreement with the view that intracellular accumulation of acetic and butyric acid results in a shortage of phosphate and coenzyme A. This shortage may serve then as signal for the synthesis of the enzymes involved in the formation of acetone and butanol.

  • PDF

Enhanced acidogenic fermentation of food waste (II) : Effect of controlling dilution rate (음식물쓰레기를 처리하는 산발효조의 효율 향상 연구(II) : 희석율 변화의 효과)

  • Shin, Hang-Sik;Han, Sun-Kee;Song, Young-Chae;Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.118-123
    • /
    • 2000
  • Food waste results in various problems such as decay, odors and leachate in collection, transportation and landfill due to the high volatile solids and moisture content. Acidogenic fermentation of food waste is influenced by the environmental conditions such as pH, retention time, etc. Each component of food waste is degraded under the different environmental conditions. Starch, cellulose and protein have their own optimum pHs and retention times for degradation. The degradation of starch increases at low pH, cellulose with increasing retention time, and protein with increasing retention time as well as approaching neutral pH. These mean that the degradation of food waste can be enhanced by adjusting the environmental conditions of acidogenic fermentation. The efficiency of acidification increased from 71.2 to 81.1% by controlling dilution(D) rate from 3.0 to $1.0d^{-1}$ depending on the state of the fermentation. The main component of the acidified product was shifted from butyric to acetic acid, indicating that the increase of acidification was mainly caused by the enhanced degradation of vegetables and meats.

  • PDF

Optimization of an Extracellular Dextranase Production from Lipomyces starkeyi KCTC 17343 and Analysis of Its Dextran Hydrolysates (Lipomyces starkeyi KCTC 17343에 의한 extracellular dextranase 최적생산과 덱스트란 hydrolysates 분석)

  • Chang, Yoon-Hyuck;Yeom, Joong-Hyun;Jung, Kyung-Hwan;Chang, Byung-Chul;Shin, Jung-Hee;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.457-461
    • /
    • 2009
  • We optimized dextranase culture conditions by batch fermentation using Lipomyces starkeyi KCTC 17343. Furthermore, dextranase was purified by an ultra-membrane, and then dextran hydrolyzates were characterized. Cell growth and dextranase production varied depending on the initial culture pH and temperature. The conditions of optimal dextranase production were met in a pH range of 4-5 and temperature between $25-30^{\circ}C$. At optimal fermentation conditions, total enzyme activity and specific enzyme activity were about 4.85 IU/ml and 0.79 IU/g cells, respectively. The specific growth rate was examined to be $0.076\;hr^{-1}$. The production of dextranase in culture broth was very stably maintained after mid-log phase of growth. The enzyme hydrolyzed dextran into DP (degree of polymerization) 2 to 8 oligodextran series. Analysis of the composition of hydrolysates suggested that the enzyme produced is an endo-dextranase.

Study of the Rheological Properties of a Fermentation Broth of the Fungus Beauveria bassiana in a Bioreactor Under Different Hydrodynamic Conditions

  • Nunez-Ramirez, Diola Marina;Medina-Torres, Luis;Valencia-Lopez, Jose Javier;Calderas, Fausto;Lopez-Miranda, Javier;Medrano-Roldan, Hiram;Solis-Soto, Aquiles
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1494-1500
    • /
    • 2012
  • Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi.

Improved Poly-${\varepsilon}$-Lysine Biosynthesis Using Streptomyces noursei NRRL 5126 by Controlling Dissolved Oxygen During Fermentation

  • Bankar, Sandip B.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.652-658
    • /
    • 2011
  • The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-${\varepsilon}$-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- ${\varepsilon}$-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-${\varepsilon}$-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates ($qO_2$) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.

Effect of Environmental Factors on By-products Production in Ethanol Fermentation (에탄올 발효에서 부산물 생성에 미치는 환경인자의 영향)

  • 김진현;유영제
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.446-451
    • /
    • 1993
  • In ethanol fermentation, by-products such as glycerol, acetic acid and lactic acid are produced along with ethanol. The effects of culture conditions on cell growth ethanol production and by-products biosynthesis were investigated in ethanol fermentation using S. cerevisiae. With increasing aeration rate or yeast extract concentration, ethanol and by-products biosynthesis decreased while final cell mass increased. With increasing glucose concentration or decreasing temperature, final cell mass, ethanol and by-products concentrations all increased. The optimal pH for the cell growth, ethanol and by-products productions was found to be pH 4.5. By-products biosynthesis was found, in general, to proceed with the ethanol biosynthesis. The results can be applied for the optimization of ethanol fermentation and for the recovery and purification of ethanol from the culture broth.

  • PDF

Production of mass microorganisms by using simple liquid culture facility to fit the field scale test.

  • Hong, Yeon-Kyu;Jung, Won-Kwon;Song, Seok-Bo;Hyun, Jong-Nae;Park, Sung-Tae;Kim, Soon-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.107.1-107
    • /
    • 2003
  • The fermentation process and subsequent processing determine the efficacy of a bioherbicide propagule. Large batches of biomass of the mycoherbicide agent for white clover, Sclerotium sp.(BWC98-105) was produced in simple liquid fermentator in 5 gallons vessels(Model No. 8087, Dabo Inc., Korea) with oxygen supply(DPH16000, FineTech Inc., Korea) simulating industrial conditions by utilizing commercially available, inexpensive ingredients (10 % rice bran), The maximum biomass yield of Sclerotium sp.(BWC98-105) was obtained after 5 days of air pumped incubation at room temperature condition(22-28$^{\circ}C$). By using this simple facility, it could get fragmented or proliferated greatly and attained maximum mycelia biomass. The biomass of mycoherbicide agent consisted of hyphae devoid of spores. Biomass mycelia of the fungus 99% survival at room temperature after 2 me. A thorough understanding of the effects of fermentation and formulation on viability and virulence is required to guide these processes. After an economical yield level of bioherbicide propagule has been achieved in a fermentation process, formulation becomes a critical factor which influences product efficacy. Because the fermentation must be stopped at a point when virulence/viability are optimum, the live bioherbicide propagule must be stabilized, formulated, and packaged.

  • PDF

Effect of O1igosaccharides on Mannitol Accumulation during the Fermentation of Kimchis (김치발효 중 Mannitol 생성에 미치는 올리고당류의 영향)

  • 강선철;윤종원노택욱
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.181-185
    • /
    • 1996
  • A considerable amounts of mannitol were accumulated during the fermentation of Kimchis. When several oligosaccharide including fructo-, soybean-, and isomaltooligosaccharides were added during the preparation of Kimchi as beneficial ingredient respectively, fructooligosaccharides (at $25^{\circ}C$) and soybean-oligosaccharides (at $35^{\circ}C$) significantly increased the amounts of mannitol accumulation, while isomalto-oligosaccharides exerted no effect at all fermentation conditions examined. This result were caused by no appearance of microorganisms which have the capability of utilizing isomalto-oligosacsharides during fermentation period. Isomalto-oligosaccharides can be recommended as an effective ingredient of Kimchis because both oligosaccharides and mannitol that have favorable functionalities were simultaneously contained. However, so as to enhance the cooling taste of Kimchis by increasing the content of mannitol, fructo- and soybean-oligosaccharides are rather favorable.

  • PDF

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.