• Title/Summary/Keyword: Fenton system

Search Result 96, Processing Time 0.031 seconds

A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil (오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구)

  • Seo, Seung-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.76-82
    • /
    • 2006
  • Fenton's reaction are difficult to apply in the field due to the low pH requirements for the reaction and the loss of reactivity caused by the precipitation of iron (II) at neutral pH. Moreover, Fenton-like reactions using iron mineral instead of injection of iron ion as a catalyst are operated to get high removal result at low pH. Because hydroxyl radical can generate at the surface of iron mineral, there are competition with a lot of hydroxide at around neutral pH. On the other side, to operate Fenton's reaction series at neutral pH, modified Fenton reaction is suggested. The complexes, composed by iron ions (ferrous ion or ferric ion)-chelating agent, could be acted as a catalyst and presented in the solution at neutral pH. However, modified Fenton reaction requires a lot of hydrogen peroxide. Accordingly, the purpose of this experiment was to effectively combine Fenton-like reaction and modified Fenton reaction for extending application of Fenton's reaction. i.e., injecting chelating agents in Fenton-like reaction at around neutral pH is increasing the concentration of dissolved iron ion and highly promoting the oxidation effect. 2,4,6-trinitrotoluene (TNT) was used as a probe compound for comparing reaction efficiencies in this study. If the concentration of dissolved iron ion in combined Fenton process were existed more than 0.1 mM, the total TNT removal were increased. Magnetite-NTA system showed the best TNT removal (76%) and Magnetite-EDTA system indicated about 56% of TNT removal. The results of these experiments proved more promoted 40-60% of TNT removal than Fenton-like reaction's.

Degradation of 2,3-dichlorophenol by a Photo-Fenton Process with Continuous Pump-Feeding of Hydrogen Peroxide (동력펌프주입식 광펜톤시스템에 의한 2,3-디염화페놀 분해특성 연구)

  • Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2014
  • The degradation of 2,3-dichlorophenol(2,3-diCP) by various advanced oxidation systems with continuous feeding of hydrogen peroxide including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been conducted. The highest removal efficiency for 2,3-diCP in the aqueous phase was obtained by the photo-Fenton process among the advanced oxidation systems. In the photo-Fenton process, The removal efficiency of 2,3-diCP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 2,3-diCP by photo-fenton reaction, 3,4-chlorocatechol and 2,3-dichlorohydroquinone were detected, thus the degradation pathways were proposed.

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Case Studies of Enhanced Geothermal System: Fenton Hill in USA and Hijiori in Japan (인공저류층 지열시스템(EGS) 연구사례: 미국 Fenton Hill과 일본 Hijiori 사례 연구)

  • Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2013
  • The importance of renewable energy has increased continuously due to the energy insecurity and the necessity of reducing carbon dioxide which is causing global climate change. In such a situation, the Pohang Enhanced Geothermal System (EGS) power plant project which is launched in December 2010 shall be a new opportunity for the development of EGS related technologies in Korea. In this paper, the case studies of Fenton Hill project in the USA and Hijiori project in Japan are introduced in order to help a part of the domestic EGS demonstration project. As a result, it could be helpful to minimize the trial and error of the domestic EGS project by acquiring the achievements and limitations of existing EGS projects.

Stabilization of Hydrogen Peroxide using Malonic Acid in Fenton and Fenton-like reactions (펜톤 및 펜톤 유사반응에서 말론산을 이용한 과산화수소의 안정화)

  • Kim, Jee-Eun;Ha, Tae-Wook;Kim, Young-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.25-31
    • /
    • 2013
  • Hydrogen peroxide takes much of the cost for Fenton reaction applied for treatment of organic contaminants. Therefore, the effective use of hydrogen peroxide makes the technology more cost effective. The effective use of hydrogen peroxide is especially needed in the soil and groundwater remediation where complete mixing is not possible and it takes a long time for reactive species to transport to the fixed target compounds. Stabilization ability for hydrogen peroxide of malonic acid was evaluated in Fenton and Fenton-like reactions in this study. Malonic acid contributes on the stabilization of hydrogen peroxide by weak interaction between iron and the stabilizer and inhibiting the catalytic role of iron. The stabilization effect increased as the solution pH decrease below the $pK_{a1}$. The stabilization effect increased as the concentration of malonic acid increased and the effect was maximized at the malonic acid concentration of about ten times higher than the iron concentration. The model organic contaminant was successfully oxidized in the presence of the stabilizer but the degradation rate was slower than the system without the stabilizer. The stabilization effect was also proved in a Fenton-like reaction where magnetite and hematite were used instead of soluble iron species.

Treatability Evaluation of N-Hexadecane and 1-Methylnaphthalene during Fenton Reaction

  • Chae, Myung-Soo;Woo, Sung-Geun;Yang, Jae-Kyu;Bae, Sei-Dal;Choi, Sang-Il
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.217-225
    • /
    • 2012
  • In this study, the treatability of two target contaminants during the Fenton reaction, n-hexadecane and 1-methylnaphthalene, was evaluated as a function of the amounts of $FeCl_2$ and $H_2O_2$ injected into open and closed reaction systems. In the Fenton reaction of n-hexadecane and 1-methylnaphthalene, the mass recovery of the target contaminants was above 95% in the closed system. However, when the Fenton reaction was performed with high amounts of $H_2O_2$ and $FeCl_2$ injected in the open system, a reduction of approximately 40% of the initial mass of 1-methylnaphthalene was observed. This trend may be explained by the unique physical properties of 1-methylnaphthalene, which has higher volatility than n-hexadecane. Further, this trend was well correlated with the rise in high temperature at the initial reaction stage. Considering the mass recovery of the two target contaminants, the reaction temperature, and the residual concentration of $H_2O_2$ at different amounts of $FeCl_2$ and $H_2O_2$ injected, it can be suggested that the Fenton reaction should be performed with controlled conditions that can provide a suitable reaction environment between oxidant and contaminants.

A Study on the Factors of Fenton-oxidation of MTBE in Water and Soil (Fenton-oxidation에 의한 MTBE(Methyl Tertiary Butyl Ether)처리시의 영향인자에 관한 연구)

  • 전은미;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The treatment of soils and water contaminated with MTBE using the Fenton oxidation was investigated. The effects of dosage of $H_{2}O_{2}$, and Fe$^{2+}$ concentrations, and solution pH on transformation and mineralization in soil were evaluated. Generation of TBA and acetone following Fenton-oxidation of MTBE in water and generation of acetone following Fenton-oxidation of TBA were observed. Therefore TBA and acetone are degradation intermediates of MTBE. There was a large difference of treatment efficiency in Fenton oxidation of MTBE between soil and water system. This may be caused by the complex nature of soil, soil organic matter which can consumed OH $\cdot$ radicals, and interacting with inorganic-soil constituents. The pH of soil was observed to have a significant effect on the chemical oxidation efficient of MTBE in soil The data demonstrated that optimal pH range were pH 3~4 and around 6. The soil batch studies demonstrated that treatment efficiency of MTBE was enhanced by adding additional ferrous salts but Fenton-oxidation occurred in no additional iron which indicated that iron in soil can catalyze the Fenton-oxidation. The most effective parameter of Fentonoxidation was $H_{2}O_{2}$/Fe$^{2+}$ ratio which theocratical ratio is 0.5. The optimal range of this ratio was found to be 0.6~2.3. In evaluating effect of $H_{2}O_{2}$ dosage on treatment efficiency, the increase of $H_{2}O_{2}$ did not always lead to increase of decompositions of MTBE in soil. Fenton oxidation was effective in destroying MTBE in aqueous extracts of contaminated soil and water. Experimental data provided evidence that the Fenton oxidation can effectively remediate MTBE-contaminated water and soil.

  • PDF

Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl

  • Xu, Huan-Yan;Prasad, Murari;Wang, Peng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.803-807
    • /
    • 2010
  • Schorl modified by $H_2SO_4$ has been successfully developed to enhance schorl-catalyzed Fenton-like reaction for removal of phenol in an aqueous solution. The phenol removal percentage can be increased from 4% to 100% by the system of modified schorl and $H_2O_2$. Batch experiments indicate that the percent increases in removal of phenol by increasing the dosage of catalyst, temperature and initial concentration of $H_2O_2$. The results of XRD, FT-IR and SEM suggest that no new phases are formed after removal of phenol by modified schorl. ICP-AES results reveal that more dissolution of iron results in higher catalytic oxidant activity in the system of modified schorl and $H_2O_2$. Besides minor adsorption, mineral-catalyzed Fenton-like reaction governs the process.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.