• 제목/요약/키워드: Femtosecond pulse laser

검색결과 115건 처리시간 0.045초

Superfluorescence from Magnetically Formed Quantum Dots: the Excitation Pulse-Width Dependence

  • Jho, Young-Dahl;Lee, Jin-Ho;Sanders, Gary D.;Stanton, Christopher J.;Reitze, David H.;Kono, Junichiro;Belyanin, Alexey A.
    • Journal of the Optical Society of Korea
    • /
    • 제12권1호
    • /
    • pp.57-61
    • /
    • 2008
  • We investigated the laser pulse-width dependence of dense plasmas confined within the magnetic length of $In_{0.2}Ga_{0.8}As$/GaAs multiple quantum wells under high magnetic fields up to 31 T. To fully fill the Landau levels of effectively zero-dimensional system, we used intense femtosecond (fs) laser pulses to create carrier densities near $10^{13}/cm^2$. The observed photoluminescence showed a characteristic of superfluorescence, above critical magnetic field when being excited by pulses shorter than coherence buildup time.

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho;Ji Eun Bae;Seong Cheol Lee;Nosoung Myoung;Fabian Rotermund
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.738-744
    • /
    • 2023
  • Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • 제12권3호
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF

Wavelength-Tunable, Passively Mode-Locked Erbium-Doped Fiber Master-Oscillator Incorporating a Semiconductor Saturable Absorber Mirror

  • Vazquez-Zuniga, Luis A.;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.117-129
    • /
    • 2013
  • We briefly review the recent progress in passively mode-locked fiber lasers (PMLFLs) based on semiconductor saturable absorber mirrors (SESAMs) and discuss the detailed characterization of a SESAM-based, passively mode-locked erbium-doped fiber (EDF) laser operating in the 1.5-${\mu}m$ spectral range for various configurations. A simple and compact design of the laser cavity enables the PMLFL to generate either femtosecond or wavelength-tunable picosecond pulses with high stability as the intra-cavity filtering method is altered. All the cavities investigated in our experiments present self-starting, continuous-wave mode-locking with no Q-switching instabilities. The excellent stability of the source eventually enables the wavelength-tunable PMLFL to be used as a master oscillator for a power-amplifier source based on a large-core EDF, generating picosecond pulses of >10-kW peak power and >100-nJ pulse energy.

Measurement and Control of the Temporal Characteristics of Femtosecond Laser Pulses (펨토초 레이저 펄스의 시간특성 측정과 제어)

  • 홍경한;이용수;성재희;남창희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.34-35
    • /
    • 2003
  • 펨토초 레이저의 개발은 커렌즈 모드록킹 (Kerr-lens mode-locking; KLM) 기술이 티타늄사파이어 이득매질에 적용되면서 1990년대에 들어 급격하게 이루어졌다. 구조가 간단하면서 안정적인 KLM 티타늄사파이어 레이저는 현재 펨토초 레이저 광원의 표준을 이루고 있으며, 처프펄스 증폭 (chirped-pulse amplification; CPA) 방식을 이용하여 소규모의 테라와트급 고출력 펨토초 레이저 제작에도 이용되고 있다. 특히, 1990년대 말에는 CPA 증폭단을 갖춘 KLM 티타늄사파이어 레이저가 상용화되면서 물리, 화학과 같은 기초 분야에서뿐만 아니라 의료용, 산업용으로도 활용이 확대되고 있다. (중략)

  • PDF

Kilohertz Gain-Switched Ti:sapphire Laser Operation and Femtosecond Chirped-Pulse Regenerative Amplification (KHz 반복률에서의 Ti:sapphire 이득 스위칭 레이저 발진과 펨토초 처프펄스 재생 증폭)

  • Lee, Yong-In;Ahn, Yeong-Hwan;Lee, Sang-Min;Seo, Min-Ah;Kim, Dai-Sik;Rotermund, Fabian
    • Korean Journal of Optics and Photonics
    • /
    • 제17권6호
    • /
    • pp.556-563
    • /
    • 2006
  • We present a comprehensive study of a chirped pulse Ti:sapphire regenerative amplifier system operating at 1 kHz. Main constituents of the system are described in detail. The amplifier stage was first converted to a repetition rate-tunable kHz gain-switched nanosecond Ti:sapphire laser. Operation characteristics at different repetition rates such as build-up times of laser pulses, pump power-dependent output powers and pulse durations, damage thresholds, and tunability ranges were studied. Based on the results achieved, the switching time of the Pocket's cell used and the round trip numbers in the regenerative amplifier were optimized at 1 kHz. The output pulses with a pulse width of 50fs from a home-made Ken lens mode-locked Ti:sapphire oscillator were used as seed pulses. The pulses were expanded to 120ps in a grating stretcher prior to coupling into the 3-mirror amplifier cavity. After amplification and recompression, a stable 1kHz Ti:sapphire regenerative amplifier system, which delivers 85-fs, $320-{\mu}J$ pulses, was fully constructed.

Generation of a 60-as Pulse Train from High Harmonic Generation (고차조화파를 이용한 60 아토초 펄스열 생성)

  • Go, Dong-Hyeok;Kim, Gyeong-Taek;Park, Ju-Yun;Nam, Chang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 한국광학회 2009년도 동계학술발표회 논문집
    • /
    • pp.361-362
    • /
    • 2009
  • High-order harmonics from gaseous atoms driven by an intense femtosecond laser pulse can form an attosecond pulse train. By selecting suitable harmonic generation conditions, the harmonic spectrum can be broad enough to form sub-hundred attoseconds. One serious limitation, however, comes from the inherent attosecond chirp originating from the harmonic generation process. We have proposed to compensate for the positive attosecond chirp by making use of negative group delay dispersion of a metallic x-ray filter or a gaseous medium. We generated 240-as pulses from neon and compressed them to 60 as after propagating through argon, close to the transform-limited duration of 47 as.

  • PDF

Generation of 106-as Pulse Train from High Harmonic Generation (고차조화파를 이용한 106 아토초 펄스열 생성)

  • Go, Dong-Hyeok;Kim, Gyeong-Taek;Park, Ju-Yun;Nam, Chang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.157-158
    • /
    • 2008
  • High-order harmonics from gaseous atoms driven by an intense femtosecond laser pulse can form an attosecond pulse train. By selecting suitable harmonic generation conditions, the harmonic spectrum can be broad enough to form sub-hundred attoseconds. One serious limitation, however, comes from the inherent attosecond chirp originating from the harmonic generation process. We have proposed to compensate for the positive attosecond chirp by making use of negative group delay dispersion of a metallic x-ray filter or a noble gas. We generated 241-as pulses from neon and compressed them to 106 as after propagating through argon, close to the transform-limited duration of 98 as.

  • PDF

Time-resolved transient reflective image on silicon surface after single-shot fs-laser pulse irradiation (단일 펨토초 레이저펄스를 이용한 실리콘 표면에서의 시분해 반사율 측정 연구)

  • Moon, Heh-Young;Sidhu, Mehra Singh;Lee, Hyun-Kyu;Jeoung, Sae-Chae
    • Laser Solutions
    • /
    • 제14권4호
    • /
    • pp.21-27
    • /
    • 2011
  • In this work, we have studied on time-resolved transient reflective image of single crystalline Si surface after single-shot fs-laser irradiation with varying the laser fluence under two different laser spot sizes. The temporal profiles of transient reflectivity changes as well as its maximum values at the early delay time were found to be strongly dependent on both the laser beam spot size and laser fluence. We have interpreted the dependence of transient reflectivity changes on the laser spot size in terms of a relaxation of the generated free carriers to the bulk silicon, which should be interacted with the plasma.

  • PDF