• 제목/요약/키워드: Feedforward-feedback 제어

검색결과 220건 처리시간 0.037초

자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발 (Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

Two-degree-of-freedom control for descriptor system with disturbance

  • Yeu, Tae-Kyeong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.151.2-151
    • /
    • 2001
  • In this paper, the design of a two-degree-of-freedom(TDF) controller is proposed to track the reference model, as well as to reject an influence of measurable disturbance for descrpitor system. The TDF controllers based on the Youla parametrization reveals that the design of the feedforward controller and the regulator can be done independently. First, to solve this problem, we will change descriptor system into regular state space system using a state feedback. And then, the feedforward controller is determined by solving a full information approach for augmented system with a nominal control constraint, and the regulator is designed by means of the loop-Shaping method.

  • PDF

비정방 선형 시스템의 강인 제어기 설계 및 그 응용 (Robust Controller Design of Non-Square Linear Systems and Its Applications)

  • 손영익;심형보;조남훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.189-197
    • /
    • 2003
  • The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

역 히스테리시스 모델링과 오차학습을 이용한 압전구동기의 초정밀 위치제어 (Precision Position Control System of Piezoelectric Actuator Using Inverse Hysteresis Modeling and Error Learning Method)

  • 김형석;이수희;정해철;이병룡;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.383-388
    • /
    • 2004
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty problem. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model, Nueral network and PID control is used as a feedback controller. To show the feasibility of the proposed controller and hysteresis modeling, some experiments have been carried out. It is concluded that the proposed control scheme gives good tracking performance

  • PDF

신경회로망의 쟈쿄비안을 이용한 feedforward/feedback 병합제어기 설계 (The combined feedforward/fedback controller design using jacobians of neural network)

  • 조규상;임제택
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.140-148
    • /
    • 1996
  • This paper proposes a combined feedforward/feedback controller which uses jacobians of neural network. The jacobians are calculated form the neural network that identifies the nonlinear plant, which are used for designing a jacobian controller and for training a neural network controller. Normally, it takes much time to train the neural network controller. Combining the neural and the jacobian controller, it can be a stable controller from the beginning of training phase of neural network, and it can be implemented as a learning-while-functioning controller. Simulated resutls for the proposed controller show its effectiveness and better performances.

  • PDF

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구 (Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve)

  • 오병걸;이민광;박영섭;이강윤;선우명호;남기훈;조성환
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF