• Title/Summary/Keyword: Feedforward Disturbance Observer

Search Result 53, Processing Time 0.032 seconds

Design of Enhanced Min-Max Control using Feedforward Control

  • Im, Yoon-Tae;Song, Seong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.312-315
    • /
    • 2003
  • This paper deals with robust control problems of linear systems with matched nonlinear uncertainties. In order to handle the uncertainties, a Lyapunov min-max control approach can usually be adopted. By the way, the min-max control input is required to be switched and provokes chattering phenomena which limit the practical implementation. The magnitude of switching control input which cause chattering is dependent on the size of uncertainties. In this paper, it is shown that the magnitude of the min-max control input can be made small using a well-known disturbance observer technique and only considers the disturbance observing errors. The chattering phenomena can be reduced as small as possible by selecting a high diturbance observer gain. The simulations show that the min-max control with a disturbance observer can reduce chattering phenomena much smaller and guarantee much better robust performance rather than the one without a disturbance observer.

  • PDF

A Study on Control of Load Torque in the Induction Motor using a Disturbance Cancellation Observer (유도 전동기의 외란 상쇄 관측기를 이용한 부하토오크 제어에 관한 연구)

  • Hwang, L.H.;Jang, J.H.;Na, S.K.;Kim, Y.S.;Cho, M.T.;Song, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1024-1026
    • /
    • 2006
  • This paper designed a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional PI controller characteristic is affected by variations of load torque disturbance. In the proposed system, the speed control characteristic using a feedforward control isn't affected by a load torque disturbance. High speed calculation and processing for vector control is carried out by ADMC300 digital signal processor. Validity of the proposed control method is verified through simulation and experimental result.

  • PDF

Using a Disturbance Observer for Eccentricity Compensation in Optical storage systems

  • Kim, Kyung-Soo;Seong, Pyo-Hong;Han, Yong-Hee;Heuigi Son
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.3-76
    • /
    • 2001
  • In this paper, an adaptive disturbance compensation technique is used in a tracking problem, under which the tracking reference is unknown. Based on a simple disturbance observer that effectively estimates the low frequency components of disturbance, the feedforward compensation is applied in addition to the conventional feedback control. Under the proposed compensation method, sensitivity analysis is given to illustrate the effectiveness. Finally, the proposed method is applied to the tracking problem in an optical storage system.

  • PDF

Repetitive learning method for trajectory control of robot manipulators using disturbance observer

  • Kim, Bong-Keun;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.99-102
    • /
    • 1996
  • A novel iterative learning control scheme comprising a unique feedforward learning controller and a disturbance observer is proposed. Disturbance observer compensates disturbance due to parameter variations, mechanical nonlinearities, unmodeled dynamics and external disturbances. The convergence and robustness of the proposed controller is proved by the method based on Lyapunov stability theorem. The results of numerical simulation are shown to verify the effectiveness of the proposed control scheme.

  • PDF

Motion Control of an Uncertain robotic Manipulator System via Neural Network Disturbance Observer (신경회로망 외란 관측기를 이용한 불확실한 로봇 시스템의 운동 제어)

  • Kim, Eun-Tai;Kim, Han-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.6-15
    • /
    • 2002
  • A neural network disturbance observer for a robotic manipulator is derived in this paper. The neural network used as the disturbance observer is a feedforward MLP(multiple-layered perceptron) network. The uniform ultimate boundness(UUB) of the proposed neural disturbance observer and the control error within a sufficiently small compact set is guaranteed. This neural disturbance observer method overcomes the disadvantages of the existing adaptive control methods which require the tedious analysis of the regressor matrix of the given manipulator. The effectiveness of the proposed neural disturbance observer is demonstrated by the application to the three-link robotic manipulator.

A Feedback Control of Pump-Controlled Electro-Hydrostatic Actuation System (펌프 가변제어기반 유압시스템의 피드백 제어)

  • Ryu, Jae-Kwan;Seo, Hyung-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.837-843
    • /
    • 2016
  • This paper presents a position control strategy for a pump-controlled electro-hydrostatic actuator (EHA) using feedforward control with disturbance compensation. As the disturbance observer is used to estimate nonlinear dynamics of EHA, which has valve-opening conditionals, as well as external disturbances, an additional feedforward control is adopted to achieve rapid response. The effectiveness of the proposed control strategy is verified through experiment using an EHA test bench. The proposed controller shows better tracking performance compared with a conventional PID controller.

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

A study on Control toad Torque of Induction Motor using a Disturbance Cancellation Observer (외란 상쇄 관측기를 이용한 유도전동기의 부하 토오크 제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • In this paper, vector control to applied disturbance offset feedforward loop control for changing disturbances with various mechanical parameter is suggested. The proposed system estimate load torque based on induction motor torque using minimum diemension state observer. Because speed controller using state observer is used on condition of feedforward loop fur a torque, the robust speed control system realized. In this study, the proposed paper does to heighten reliability of system by presuming and use the speed by voltage and current that is detected without speed sensor. To prove the propriety of this paper, the various simulation carried out adequacy using a Matlab Simulink, and at the same time real system is made, using a ADMC300 digital signal processor, so it is proved. As the experimental result of embodying the system, the robust system is realized.

Design of Digital Controller for Uninterruptible Power Supply Using Disturbance Observer

  • Cho, Jun-Seok;Lee, Seung-Yo;Mok, Hyung-Soo;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.830-835
    • /
    • 1998
  • This paper describes a new digital control method of 3-phase PWM inverter with LC filter for uninterruptible power supply(UPS). The overall control system is based on the dead beat control, which has the minor loop of current control within the voltage control major loop. In this paper, the full-order disturbance observer is proposed to compensate the disturbances generated due to a sudden change of load currents. The proposed disturbance observer is composed of dead beat observer which estimates state values within a finite time, and cancels the disturbances by adding feedforward compensation loop in the control system. In addition, on order to remove a defect of oscillation generated in output of conventional dead beat controller, a modified dead beat algorithm is proposed in this paper.

  • PDF

Robust Speed Control of Vector Controlled PMSM with Load Torque Observer (부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Won-Oh;Yoon, Myung-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF