• Title/Summary/Keyword: Feedback mechanism

Search Result 406, Processing Time 0.028 seconds

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Sensory Motor Coordination System for Robotic Grasping (로봇 손의 힘 조절을 위한 생물학적 감각-운동 협응)

  • 김태형;김태선;수동성;이종호
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, human motor behaving model based sensory motor coordination(SMC) algorithm is implemented on robotic grasping task. Compare to conventional SMC models which connect sensor to motor directly, the proposed method used biologically inspired human behaving system in conjunction with SMC algorithm for fast grasping force control of robot arm. To characterize various grasping objects, pressure sensors on hand gripper were used. Measured sensory data are simultaneously transferred to perceptual mechanism(PM) and long term memory(LTM), and then the sensory information is forwarded to the fastest channel among several information-processing flows in human motor system. In this model, two motor learning routes are proposed. One of the route uses PM and the other uses short term memory(STM) and LTM structure. Through motor learning procedure, successful information is transferred from STM to LTM. Also, LTM data are used for next moor plan as reference information. STM is designed to single layered perception neural network to generate fast motor plan and receive required data which comes from LTM. Experimental results showed that proposed method can control of the grasping force adaptable to various shapes and types of greasing objects, and also it showed quicker grasping-behavior lumining time compare to simple feedback system.

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

Effectiveness Evaluation of Community Empowerment Program - Focusing on Daegwallyeong-Meyeon - (지역역량강화 프로그램의 효과성 평가 - 대관령면 지역을 중심으로 -)

  • Kim, Ki Sung;Jeong, Mee Kyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2020
  • This study conducted monitoring and outcome evaluation of three newly-established programs in 'Community Empowerment program in 2019' in Daegwallyeong-myeon. The purpose of the study is to find out the organic relationship between the process and result of the program and its effect on participants by performing two evaluation methods in parallel on the target program. As a result of the research, first, it was found that there was a difference in the degree of acceptance of feedback depending on the instructor who is charging each program. Second, there were two categorized results such as the depth and direction which is changed by the number of monitoring, or similar content being repeated. Third, there was an organic relationship between monitoring evaluation and outcome evaluation. Therefore, it can be said that it is highly likely to lead to more systematic and meaningful results if the community empowerment program is monitored as a process evaluation and outcome evaluation.

Improving User Satisfaction in Adaptive Multicast Video

  • de Amorim, Marcelo Dias;Duarte, Otto Carlos M.B.;Pujolle, Guy
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.221-229
    • /
    • 2002
  • Adaptability is the most promising feature to be applied in future robust multimedia applications. In this paper, we propose the Direct Algorithm to improve the degree of satisfaction at heterogeneous receivers in multi-layered multicast video environments. The algorithm relies on a mechanism that dynamically controls the rates of the video layers and is based on feedback control packets sent by the receivers. The algorithm also addresses scalability issues by implementing a merging procedure at intermediate nodes in order to avoid packet implosion at the source in the case of large multicast groups. The proposed scheme is optimized to achieve high global video quality and reduced bandwidth requirements. We also propose the Direct Algorithm with a virtual number of layers. The virtual layering scheme induces intermediate nodes to keep extra states of the multicast session, which reduces the video degradation for all the receivers. The results show that the proposed scheme leads to improved global video quality at heterogeneous receivers with no cost of extra bandwidth.

Direct Seek Control for Swing-arm Type Dual Stage Actuators in Blu-Ray Disc Drive Systems

  • Ryu, Shi-Yang;Jung, Soo-Yul;Yoon, Hyeong-Deok;Park, In-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.735-739
    • /
    • 2003
  • This paper presents a direct seek control algorithm for swing-arm type dual stage servo system that consists of a coarse actuator and a fine actuator. The proposed scheme is to design a control system that attenuates the effect of dynamic coupling between the two actuators so that the seek operation can be performed in a single-shot with stability. In an optical drive system with dual stage servo mechanism, the effect of dynamic coupling between the two actuators needs to be handled during the coarse seek operation due to its inherent structure. In an extreme case, the two actuators can collide each other, which leads to critical degradation of the seek performance. To handle this problem, our proposed control scheme is to generate the drive signals such that the two actuators behave as if they are a single fixed body. To this end, a feedforward controller and two feedback controllers are designed that enable the current drive system perform wide range of track seek. Simulation results are provided to show the validity and feasibility of our proposed algorithm.

  • PDF

Performance Evaluation of Driver Supportive System with Haptic Cue Gear-shifting Function Considering Vehicle Model (차량모델을 고려한 햅틱 큐 기어변속보조 시스템의 성능평가)

  • Han, Young-Min;Sung, Rockhoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • This paper proposes a driver supportive device with haptic cue function which can transmit optimal gear shifting timing to a driver without requiring the driver's visual attention. Its performance is evaluated under vehicle model considering automotive engine, transmission and vehicle body. In order to achieve this goal, a torque feedback device is devised and manufactured by adopting the MR (magnetorheological) fluid and clutch mechanism. The manufactured MR clutch is then integrated with the accelerator pedal to construct the proposed haptic cue device. A virtual vehicle emulating a four-cylinder four-stroke engine, manual transmission system of a passenger vehicle and vehicle body is constructed and communicated with the manufactured haptic cue device. Control performances including torque tracking and fuel efficiency are experimentally evaluated via a simple feed-forward control algorithm.

A Study on the Inverse kinematic Analysis of a Binary Robot Manipulator using Backbone Curve (등뼈 곡선을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Lee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.174-179
    • /
    • 1999
  • A binary parallel robot manipulator uses actuators which have only two stable states and is structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has the following advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators, it is very difficult to solve an inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem when the number of actuators are too much or the target position is located outside of workspace. The backbone curve is generated optimally by considering the curvature of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criteria.

  • PDF

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

Teleoperation of Pneumatic Artificial Muscles Based on Joint Stiffness of Master Device (마스터장치의 회전강성을 고려한 공압인공근육의 원격조정)

  • Kim, Ryeong Hyeon;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1521-1527
    • /
    • 2013
  • This study proposes a wearable master device that can measure the joint stiffness and the angular displacement of a human operator to enhance the adapting capability of a slave system. A lightweight inertial sensor and the exoskeleton mechanism of the master device can make an operator feel comfortable, and artificial pneumatic muscles having a working principle similar to that of human muscles improve the performance of the slave device on emulating what a human operator does. Experimental results revealed that the proposed master/slave system based on the muscle stiffness sensor yielded uniform tracking performance compared with a conventional position-feedback controller when the payload applied to the slave system changed.