• Title/Summary/Keyword: Feedback current

Search Result 939, Processing Time 0.031 seconds

Design of a State Feedback Controller with a Current Estimator in Brushless DC Motors (전류추정기에 의한 브러시리스 직류전동기의 상태변수 궤환제어기 설계)

  • Oh, Tae-Seok;Shin, Yun-Su;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.589-595
    • /
    • 2007
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor CUlTent it is modeled by a neural network that is contigured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which past inputs and outputs are used to calculate the current output. Using the model, a state feedback controller to compensate the effects of disturbance has been designed. The controller is implemented by a 16-bit microprocessor and the effectiveness of the proposed control method is verified through experiments.

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC-DC Converters (DC-DC 컨버터에서 Duty Feedback 을 이용한 새로운 센서리스 제어 기법)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.115-118
    • /
    • 2001
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC-DC converters. The proposed sensorless control scheme (DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present better dynamic response performance than conventional sensorless current mode control (SCM) in case that input source is perturbed by step change or DC input source includes the . harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC-DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated results.

  • PDF

The Characteristics of Control Scheme and Inner Feedback Control with HC of Current-Controlled PWM Inverter (전류제어 PWM인버터의 HC에 대한 제어방식과 내부 피이드백제어의 특성)

  • 정동화;배진호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1031-1041
    • /
    • 1992
  • Existing current-controlled inverters with hysteresis controller (HC) result in the dependence of the inverter on its load characteristics, poor inverter utilization due to too much or too little supply voltage, and the current error in the hysteresis band(HB) which causes deterioration of operation of the supplied motor. In this paper, techniques and results of modeling the operation of current-controlled three phase power inverter with HC are presented. Four symmetrical control schemes are considered: the so called three independent control, three semi-dependent control(a), three semi-dependent control(b) and three dependent control each using three current controller. The dependence of the inverter on its load has been studied. To overcome this difficulty, an inner feedback control has been introduced and optimum parameter has been determined. With the addition of an inner feedback control, adjustment of the switching frequency to a desired value is possible. Also, this modification improves operating characteristics of inverter by enforcing a switching pattern of low dependence on the load, resulting in significantly improved quality of the output current.

  • PDF

Low-Voltage CMOS Current Feedback Operational Amplifier and Its Application

  • Mahmoud, Soliman A.;Madian, Ahmed H.;Soliman, Ahmed M.
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • A novel low-voltage CMOS current feedback operational amplifier (CFOA) is presented. This realization nearly allows rail-to-rail input/output operations. Also, it provides high driving current capabilities. The CFOA operates at supply voltages of ${\pm}0.75V$ with a total standby current of 304 ${\mu}A$. The circuit exhibits a bandwidth better than 120 MHz and a current drive capability of ${\pm}1$ mA. An application of the CFOA to realize a new all-pass filter is given. PSpice simulation results using 0.25 ${\mu}m$ CMOS technology parameters for the proposed CFOA and its application are given.

  • PDF

A Novel Electrostatic Discharge (ESD) Protection Device by Current Feedback Using $0.18\;{\mu}m$ Process ($0.18\;{\mu}m$ 공정에서 전류 피드백을 이용한 새로운 구조의 정전기 보호 소자에 관한 연구)

  • Bae, Young-Seok;Lee, Jae-In;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.3-4
    • /
    • 2009
  • As device process technology advances, effective channel length, the thickness of gate oxide, and supply voltage decreases. This paper describes a novel electrostatic discharge (ESD) protection device which has current feedback for high ESD immunity. A conventional Gate-Grounded NMOS (GGNMOS) transistor has only one ESD current path, which makes, the core circuit be in the safe region, so an GGNMOS transistor has low current immunity compared with our device which has current feedback path. To simulate our device, we use conventional $0.18\;{\mu}m$ technology parameters with a gate oxide thickness of $43\;{\AA}$ and power supply voltage of 1.8 V. Our simulation results indicate that the area of our ESD protection, device can be smaller than a GGNMOS transistor, and ESD immunity is better than a GGNMOS transistor.

  • PDF

LDO Regulator with Improved Regulation Characteristics and Feedback Voltage Buffer Structure (Feedback Buffer 구조 및 향상된 Regulation 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo;Park, Tae-Ryong
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.462-467
    • /
    • 2022
  • The feedback buffer structure is proposed to alleviate the overshoot and undershoot phenomenon and the regulation of the output voltage. The conventional LDO regulator undergoes a regulation voltage change caused by a constant load current change. An LDO regulator with a feedback voltage sensing structure operates in the input voltage range of 3.3 to 4.5 V and has a load current of up to 150 mA at output voltage of 3 V. According to the simulation results, a regulation value of 6.2 mV was ensured when the load current uniformly changed to 150 mA.

Design of a High-Efficiency CMOS DC-DC Boost Converter Using a Current-Sensing Feedback Method (전류 감지 Feedback 기법을 사용한 고효율 CMOS DC-DC Boost 변환기의 설계)

  • Jung Kyung-Soo;Yang Hui-Kwan;Cha Sang-Hyun;Lim Jin-Up;Choi Joong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.23-30
    • /
    • 2006
  • This paper presents a design of a high-efficiency CMOS DC-DC boost converter using a current-sensing feedback method. High-precision current-sensing circuity is incorporated in order to sense the current flowing in the inductor, which determines the switching scheme of the pulse-width modulation. The external components or large chip area for the frequency compensation can be avoided while maintaining the stable operations of the converter. Various input/output voltage levels can be available through the external resistor strings. The designed DC-DC converter is fabricated in a 0.18-um CMOS technology with a thick-gate oxide option. The converter shows the maximum efficiency over 90% for the output voltage of 3.3V and load current larger than 200mA. The load regulation is 1.15% for the load current change of 100mA.

A dP/dV Feedback-Controlled MPPT Method for Photovoltaic Power System Using II-SEPIC

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.604-611
    • /
    • 2009
  • A dP/dV feedback-controlled MPPT (Maximum Power Point Tracking) method for photovoltaic power systems using II-SEPIC (Isolated Inverse-SEPIC; Single Ended Primary Inductance Converter) is presented and a current-mode dP/dV feedback-controlled MPPT method is devised to apply for the PV power converter system. A control strategy for the current-mode dP/dV feedback control system is developed in this paper and the proposed MPPT shows relatively satisfactory dynamics against rapidly changing insolation conditions. In order to verify the validity and effectiveness of the proposed method, simulations and experiments of the PV power system using II-SEPlC converter are performed. These simulation and experiment results show that the proposed method enables the PV power system to extract maximum power from the photovoltaic module against the solar insolation variation.

An OTA with Positive Feedback Bias Control for Power Adaptation Proportional to Analog Workloads

  • Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • This paper reports an adaptive positive feedback bias control technique for operational transconductance amplifiers to adjust the bias current based on the output current monitored by a current replica circuit. This technique enables operational transconductance amplifiers to quickly adapt their power consumption to various analog workloads when they are configured with negative feedback. To prove the concept, a test voltage follower is fabricated in $0.5-{\mu}m$ CMOS technology. Measurement result shows that the power consumption of the test voltage follower is approximately linearly proportional to the load capacitance, the signal frequency, and the signal amplitude for sinusoidal inputs as well as square pulses.

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC/DC Converters (DC/DC 컨버터에서 Duty Feedback을 이용한 새로운 센서리스 제어기법)

  • 이동윤;노형주;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.554-562
    • /
    • 2002
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC/DC converters. The proposed Duty Feedback Control(DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present faster dynamic response performance than conventional Sensorless Current Mode(SCM) control in case that input source is perturbed by step change or DC input source includes the harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC/DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated and experimental results.