• Title/Summary/Keyword: Feedback Channel

Search Result 521, Processing Time 0.022 seconds

Noncooperative Multimode Precoding with Limited Feedback in MIMO Interference Channels

  • Lee, Jong-Ho
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.763-766
    • /
    • 2012
  • This letter proposes an iterative multimode precoding scheme with limited feedback for nonreciprocal MIMO interference channels. Based on analysis of game theory, we model the iterative multimode precoding as a noncooperative game with a finite set of strategies. Numerical results are presented to verify the sum rate performance of the proposed scheme.

Performance of Iterative Soft Decision Feedback Equalizers for Single-Carrier Transmission

  • Jeon, Taehyun;Yoon, Seokhyun;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1280-1285
    • /
    • 2017
  • In this paper, we consider iterative soft-decision feedback equalizers (sDFE), a.k.a. turbo equalizers for single-carrier transmission. Turbo equalizer takes log-likelihood ratio (LLR) feedback from channel decoder and convert the LLR into symbol estimates and variances to be used for the LLR update at the sDFE. Specifically, we consider both time domain and frequency-domain sDFE and compare their performances. The results shows that frequency-domain sDFE performs better than time-domain one and also that considerable gain can be obtained especially when the channel has deep nulls.

A Beamformer Construction Method Via Partial Feedback of Channel State Information of MIMO Systems (다중 입출력 시스템의 부분적 채널 정보 궤환을 통한 빔포머 형성 방안)

  • Kim, Yoonsoo;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.26-33
    • /
    • 2014
  • For wireless communication systems of (and beyond) LTE-Advanced, multiple-input multiple-output (MIMO) with an increased number of antennas will be utilized for system throughput improvement. When using such an increased number of antenna, an excessive amount of overhead in channel state information (CSI) feedback can be a serious problem. In this paper, we propose methods which reduce the CSI feedback overhead, particularly including application strategies for multi-rank transmission targeted for two or more reception antennas. To reduce the information which is instantaneously transmitted from the reception node to the transmission node, we present a beamforming method utilizing singular value decomposition (SVD) based on channel estimation of partitioned antenna arrays. Since the SVDs for partial matrices of the channel may lose the characteristics of the original unpartitioned matrix, we explain an appropriate scheme to cope with this problem.

System-Level Performance of Limited Feedback Schemes for Massive MIMO

  • Choi, Yongin;Lee, Jaewon;Rim, Minjoong;Kang, Chung Gu;Nam, Junyoung;Ko, Young-Jo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • To implement high-order multiuser multiple input and multiple output (MU-MIMO) for massive MIMO systems, there must be a feedback scheme that can warrant its performance with a limited signaling overhead. The interference-to-noise ratio can be a basis for a novel form of Codebook (CB)-based MU-MIMO feedback scheme. The objective of this paper is to verify such a scheme's performance under a practical system configuration with a 3D channel model in various radio environments. We evaluate the performance of various CB-based feedback schemes with different types of overhead reduction approaches, providing an experimental ground with which to optimize a CB-based MU-MIMO feedback scheme while identifying the design constraints for a massive MIMO system.

SPICE Model of Drain Induced Barrier Lowering in Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET (무접합 원통형 MOSFET에 대한 드레인 유도 장벽 감소의 SPICE 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-282
    • /
    • 2018
  • We propose a SPICE model of drain-induced barrier lowering (DIBL) for a junctionless cylindrical surrounding gate (JLCSG) MOSFETs. To this end, the potential distribution in the channel is obtained via the Poisson equation, and the threshold voltage model is presented for the JLCSG MOSFET. In a JLCSG nano-structured MOSFET, a channel radius affects the carrier transfer as well as the channel length and oxide thickness; therefore, DIBL should be expressed as a function of channel length, channel radius, and oxide thickness. Consequently, it can be seen that DIBLs are proportional to the power of -3 for the channel length, 2 for the channel radius, 1 for the thickness of the oxide film, and the constant of proportionality is 18.5 when the SPICE parameter, the static feedback coefficient ${\eta}$, is between 0.2 and 1.0. In particular, as the channel radius and the oxide film thickness increase, the value of ${\eta}$ remains nearly constant.

Millimeter Wave Energy Transfer based on Beam Steering (밀리미터파를 이용한 빔 조향 기반의 에너지 전송 기술)

  • Han, Yonggue;Jung, Sangwon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.10-15
    • /
    • 2017
  • Feedback burden of a full-digital energy beamforming, which is known as the optimal precoding scheme for radio frequency (RF) energy transfer, is huge because it uses a vector quantization for a channel feedback. To reduce the feedback burden, we consider a beam steering based wireless energy transfer, which uses a scalar quantization. Researches related to the beam steering based wireless energy transfer have been studied in special channel model with an assumption of full channel state information at the transmitter. In this paper, we analyze the beam steering scheme compared with the full-digital energy beamforming for practical channel models with channel estimation errors. According to characteristics of the millimeter wave channel, the number of antennas of the base station and the user, the distance between them, and channel estimation errors, we simulate the performance of the beam steering scheme and analyze reasons why.

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

Channel Prediction and Estimation based Feedback Overhead Reduction for Adaptive OFDM System (채널 예측 및 추정을 이용한 적응 전송 OFDM 시스템의 피드백 오버헤드 감소 기법)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.213-214
    • /
    • 2006
  • To reduce the feedback overhead of predicted CSI (channel status information) of adaptive OFDM (orthogonal frequency division multiplexing), we use partial data of CSI and employ linear interpolation. Simulation results show estimated CSI and its MSE.

  • PDF

A New Compressive Feedback Scheme Based on Distributed Compressed Sensing for Time-Correlated MIMO Channel

  • Li, Yongjie;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.580-592
    • /
    • 2012
  • In this paper, a new compressive feedback (CF) scheme based on distributed compressed sensing (DCS) for time-corrected MIMO channel is proposed. First, the channel state information (CSI) is approximated by using a subspace matrix, then, the approximated CSI is compressed using a compressive matrix. At the base station, the approximated CSI can be robust recovered with simultaneous orthogonal matching pursuit (SOMP) algorithm by using forgone CSIs. Simulation results show our proposed DCS-CF method can improve the reliability of system without creating a large performance loss.

Decision Feedback Detector for Space-Time Block Codes over Time-Varying Channels

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.506-513
    • /
    • 2003
  • Most existing space-time coding (STC) schemes have been developed for flat fading channels. To obtain antenna diversity gain, they rely on channel state information (CSI) required at the receiver through channel estimation techniques. This paper proposes a new decision feedback decoding scheme for Alamouti-based space-time block coding (STBC) transmission over time-selective fading channels. In wireless channels, time-selective fading effects arise mainly due to Doppler shift and carrier frequency offset, Modelling the time-selective fading channels as the first-order Gauss-Markov processes, we use recursive algorithms such as Kalman filtering, LMS and RLS algorithms for channel tracking. The proposed scheme consists of the symbol decoding stage and channel tracking algorithms. Computer simulations confirm that the proposed scheme shows the better performance and robustness to time-selectivity.