DOI QR코드

DOI QR Code

A Beamformer Construction Method Via Partial Feedback of Channel State Information of MIMO Systems

다중 입출력 시스템의 부분적 채널 정보 궤환을 통한 빔포머 형성 방안

  • Kim, Yoonsoo (Department of Electronic Engineering, Sogang University) ;
  • Sung, Wonjin (Department of Electronic Engineering, Sogang University)
  • Received : 2014.02.10
  • Accepted : 2014.05.28
  • Published : 2014.06.25

Abstract

For wireless communication systems of (and beyond) LTE-Advanced, multiple-input multiple-output (MIMO) with an increased number of antennas will be utilized for system throughput improvement. When using such an increased number of antenna, an excessive amount of overhead in channel state information (CSI) feedback can be a serious problem. In this paper, we propose methods which reduce the CSI feedback overhead, particularly including application strategies for multi-rank transmission targeted for two or more reception antennas. To reduce the information which is instantaneously transmitted from the reception node to the transmission node, we present a beamforming method utilizing singular value decomposition (SVD) based on channel estimation of partitioned antenna arrays. Since the SVDs for partial matrices of the channel may lose the characteristics of the original unpartitioned matrix, we explain an appropriate scheme to cope with this problem.

LTE-A (Long Term Evolution-Advanced) 이후 무선 통신 시스템에서는, 시스템 전송률의 향상을 위해 증가한 개수의 입출력 안테나를 사용하는 MIMO (multiple-input multiple-output) 시스템이 활용될 것이다. 이러한 증가한 개수의 안테나 어레이를 사용하는 경우, 채널 정보의 궤환에 있어서 과도한 오버헤드가 문제가 될 수 있다. 본 논문에서는 이러한 상황에서 채널 정보의 궤환 오버헤드를 줄이기 위한 방안과, 특히 수신단에서 두 개 혹은 그 이상의 수신 안테나를 사용하는 다중 랭크 전송시의 적용 방안을 제안한다. 수신단에서 송신단으로 일시에 궤환되는 정보의 양을 줄이기 위해 안테나 어레이를 분할하여 추정하는 채널을 기반으로 특이값 분해 (SVD, Singular Value Decomposition)를 활용하는 빔포밍 방안을 제시한다. SVD의 연산과정의 특성 상, 분할된 행렬에 대한 SVD 연산은 원 행렬의 특성을 상실시킬 수 있으므로 이에 대한 대응 방안에 대해서도 설명한다.

Keywords

References

  1. E. Dahlman, S. Parkvall, and J. Skold, LTE/LTE-Advanced for Mobile Broadband.. Academic Press, 2011.
  2. 3GPP, TR 36.814, "Further Advancements for E-UTRA;Physical Layer Aspects".
  3. S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: From theory to practice, 2nd ed. Chichester, U.K.: Wiley, 2011.
  4. F. Rusek, et. al. "Scaling up MIMO: Opportunities and challenges with very large arrays." IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, 2012.
  5. H. Huh, G. Caire, H. C. Papadopoulos, and S. A. Ramprashad, "Achieving 'Massive MIMO' spectral efficiency with a not-so-large number of antennas," IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3226-3239, Sept. 2013.
  6. R. W. Heath Jr., T. Wu, and A. C. K. Soong, "Progressive refinement of beamforming vectors for high-resolution limited feedback," EURASIP J. Advances Signal Process, article ID 463823, 13 pages, 2009.
  7. J. Sung and W. Sung, "Large-scale MIMO beamforming using successive channel state estimation and codebook extension," in Proc. 2013 IEEE 24th International Symposiom on Personal, Indoor and Mobile Radio Communications, PIMRC 2013, London, UK, Sept. 08-11, 2013.
  8. H. Kang, Y. KIM, and W. Sung, "Performance evaluation of MIMO systems utilizing channel interpolation and multiple codebooks," in Proc. 2013 IEEK Fall Conference, Seoul, Korea, Nov. 23, 2013.
  9. M. Raja and P. Muthuchidambaranathan, "BER performance of SVD-based transmit beamforming with various modulation techniques," in Proc. 2010 5th Int. Conf. Industrial and Information Systems, ICIIS 2010, India, July 29-Aug. 01, 2010.
  10. 3GPP, TR 36.211, "Physical Channels and Modulation (Releas 11)"
  11. ITU-R Report M.2135-1, Guidelines for evaluation of radio interface technologies for IMT-Advanced, Dec. 2009.