• Title/Summary/Keyword: Feed-angle

Search Result 255, Processing Time 0.026 seconds

A study on optimum of cutting ability with change of tool rake angles (바이트 인선각의 변화에 따른 절삭성의 최적화 방안에 관한 연구)

  • 염성하;오재응;현청남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1043-1054
    • /
    • 1988
  • The optimum cutting condition of rake angle in turning was investigated in SM45C and SM20C. Results of experiments in SM45C and SM20C are as follow. Specific cutting resistance became higher as the depth of cutting, feed or cutting velocity decreases at same rake angle and resistance became low value at 20.deg.(SM45C), 10.deg.(SM20C). The optimum cutting condition for SM45C is depth of cutting 0.7mm, rake angle 30.deg., cutting velocity 200mm/min, feed 0.1mm/rev, and for SM20C is depth of cut 0.5mm, rake angle 10.deg., cutting velocity 150mm/min, feed 0.1mm/rev.The rake angle for good roughness is 15.deg for SM45C, and that for SM20C is 25.deg. The roughness is influenced by feed and it has the lowest value at 0.1mm/rev and the cutting condition is closely related with the change of cutting velocity and feed.

Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser (저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

Development of Cutting Tool in Non-ferrous Metals at Turning (선삭에서 비철금속 절삭용 공구의 개발)

  • Chung, J.S.;Jun, J.U.;Ha, M.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.82-87
    • /
    • 2002
  • Not only ferrous but also non-ferrous materials such as aluminum, brass, plastic and woods need cutting operation in recent manufacturing industry. Over the past few years a considerable number of studies have been made on non-ferrous metal cutting. But more study is required to meet various engineering needs. The purpose of this paper is to preform an experiment on the influence of feed-rate adjustment and side rake angle in turning operations from non-ferrous metals. As a result, the surface roughness was reduced when a side-rake angle increases and feed-rate decreases in the case of the plastic, brass, aluminum, and paulownia. Therefore, this papers develop a new type bite that be used to adjust side-rake angle.

  • PDF

Angle Calculation Rotation Angle of One-axis Manipulator in Laser Module (레이저모듈에서의 1-축 틸팅의 회전각 계산)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun;Kim, Dong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.506-509
    • /
    • 2012
  • Laser assisted machining is the processing method that preheating brittle materials by laser heat source and cutting the soften area. This processing applied to various industries because it can be cutting difficult-to-cut materials. However, the laser assisted machining appeared the limitations of processing for equipped with the spindle. So, it assumed separate model that spindle and laser assisted machining. In feed, the calculation of changing the angle of the laser module according to preheat point and the shape of the feed is important and it tried easy calculating changing angle of 1-axis Manipulator in separate model. In 3 types feed shape, angle of 1-axis Manipulator was calculated when fixed and moved in the outside of spindle. In this study, suggest 2 types of methods for laser module when fixed and moved.

Estimation of Radial Immersion Ratio and Instantaneous Ratio between Cutting Force Components using Cutting Force in Face Milling (정면밀링에서 절삭력을 이용한 반경방향 절입비와 순간 절삭력 성분 사이의 비 추정)

  • 김명곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.239-244
    • /
    • 1999
  • Radial immersion ratio is an important factor to determine the threshold in face milling and should be estimated in process for automatic force regulation. In this paper, presented is a method of on-line estimation of radial immersion ratio using cutting force. When a tooth finishes sweeping, sudden drop of cutting forces occurs. These force drops are equal to the cutting forces that act on a single tooth at the swept angle of cut and can be acquired from cutting force signals in feed and cross-feed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the swept angle of cut is a function of the swept angle of cut and the ratio of radial to tangential cutting force. In the research, it is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial to tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions. Using the measured cutting forces and predetermined ratio, the redial immersion ratio is estimated. various experiments show that the radial immersion ratio can be estimated by the proposed method very well.

  • PDF

In-process Estimation of Radial Immersion Angle Using Cutting Force in Face Milling

  • Kwon, Won-Tae;Park, Deokki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.873-881
    • /
    • 2002
  • In this paper, a on-line estimation method of the radial immersion angle using cutting force is presented. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the immersion angle is a function of the immersion angle and the ratio of radial to tangential cutting force. It is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle, which implies that the ratio determined by one preliminary experiment can be used regardless of the cutting conditions for a given tool and workpiece material. Using the measured cutting force during machining and predetermined ratio, the radial immersion ratio is estimated in process. Various experimental results show that the proposed method works within 5% error range.

Modeling of the Axial Movement of Parts During Centerless Through-Feed Grinding

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1044-1053
    • /
    • 2003
  • There are two major differences between the centerless infeed grinding process and the centerless through-feed grinding process. One is an axial movement of workpieces, and the other is that several workpieces are ground simultaneously and continuously by through-feeding. Because of these differences, through-feed ground parts inherently possess not only the roundness error but also the tapering error. The aims of the research reported in this paper are to examine this inherent tapering characteristic and to find the effects of grinding variables (center height angle, regulating wheel tilt angle, and shape of grinding wheel surface). To accomplish the objectives, experiments were carried out using two types of cylindrical workpiece shapes. Also, computer simulations were performed using the 3-D through-feed grinding model.

On-line Simulaneous Identification of Immersion Ratio and Cutting Force Ratio using Cutting Forces in Face Milling (정면밀링에서 절삭력을 이용한 절입비와 절산력비의 실시간 추정)

  • 김명곤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.91-98
    • /
    • 2000
  • In this paper , presented is a method of on-line estimation of the radial immersion ratio and cutting force ratio using cutting force. When a tooth finishes sweeping, sudden drop of cutting forces occurs. These force drops are equal to the cutting forces that act on a single tooth at the swept angle of cut and can be obtained from cutting force signals in feed and crossfeed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the swept angle of cut is a function of the swept angle of cut and the ratio of radial to tangential cutting force. In the research, it is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial to tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions. Using the measured cutting forces, the radial immersion ratio is estimated along with the cutting force ratio at that immersion angle. Various experiments show that the radial immersion ratio and instantaneous ratio of the radial to tangential direction cutting force can be estimated by the proposed method very well.

  • PDF

On-line Estimation of Radial Immersion Ratio Using Cutting Force and Instantaneous Cutting Force Ratio in Face Milling (정면밀링 가공 중 절삭력과 순간 절삭력 성분비를 이용한 반경방향 절입비의 실시간 추정)

  • Kim, Myeong-Gon;Gwon, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2123-2130
    • /
    • 2000
  • Radial immersion ratio is an important factor to determine the threshold in face milling and should be estimated in process for automatic force regulation. In this paper, presented is a method of on-line estimation of the radial immersion ratio using cutting force. When a tooth finishes sweeping, sudden drop of cutting forces occurs. This force drop is equal to the cutting force that acts on a single tooth at the swept angle of cut and can be obtained from cutting force signal in feed and cross-feed direction. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the swept angle of cut is a function of the swept angle of cut and the ratio of radial to tangential cutting force. In the research, it is found that the ratio of radial to tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial to tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions. Using the measured cutting force and predetermined ratio, the radial immersion ratio is estimated. Various experiments show that the radial immersion ratio and instantaneous ratio of the radial to tangential direction cutting force can be estimated very well by the proposed method.

Machinability of Sintered Carbon (탄소 소결체의 피절삭성)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.69-76
    • /
    • 1997
  • This paper deals with the machinability based on turning and drilling tests. The main conclusions obtained were as follows. (1) Turning : The roughness of Machined surface decreases with the increase of the rake angle of tools, and the tool wear becomes smaller with the decrease of the rake angle. When the feed rate becomes larger, the fracture of work material in the vicinity of the cutting edge occurs on a larger scale, eventually decreasing tool wear. (2) Drilling : Considering both tool life and productivity, it is reasonable to cut with the high cutting speed and feed rate. The tool wear increases with the increase of feed rate, and the tendency of feed rate on tool wear becomes stronger at the cutting speed $\geq$30m/min.

  • PDF