• Title/Summary/Keyword: Feed rates

Search Result 539, Processing Time 0.029 seconds

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (중공사형 분리막에 대한 직접접촉식 막분리 공정의 수치해석)

  • Shin, Ho-Chul;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Membrane distillation (MD) is a separation process which higher vapor pressure components are evaporated in mixed liquid solution through hydrophobic membrane with 0.1 or $0.5{\mu}m$ pore size. In this study, direct contact membrane distillation process for hollow fiber module were interpreted numerically using the "COMSOL Multiphysics" software. The variables for the system were temperatures and flow rates of lumen and shell side solutions. The permeate flux increased from 1.0 to $3.8L/m^2{\cdot}hr$ as temperature of the feed solution for lumen increased from 30 to $50^{\circ}C$. However the effect of shell solution temperature on permeate flux was relatively low. Also, the optimum velocity of lumen feed was obtained at 0.15 m/s ($Re_L=135$) by considering MD permeate flux as well as operating pressure loss.

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

Modelling of starch industry wastewater microfiltration parameters by neural network

  • Jokic, Aleksandar I.;Seres, Laslo L.;Milovic, Nemanja R.;Seres, Zita I.;Maravic, Nikola R.;Saranovic, Zana;Dokic, Ljubica P.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 2018
  • Artificial neural network (ANN) simulation is used to predict the dynamic change of permeate flux during wheat starch industry wastewater microfiltration with and without static turbulence promoter. The experimental program spans range of a sedimentation times from 2 to 4 h, for feed flow rates 50 to 150 L/h, at transmembrane pressures covering the range of $1{\times}10^5$ to $3{\times}10^5Pa$. ANN predictions of the wastewater microfiltration are compared with experimental results obtained using two different set of microfiltration experiments, with and without static turbulence promoter. The effects of the training algorithm, neural network architectures on the ANN performance are discussed. For the most of the cases considered, the ANN proved to be an adequate interpolation tool, where an excellent prediction was obtained using automated Bayesian regularization as training algorithm. The optimal ANN architecture was determined as 4-10-1 with hyperbolic tangent sigmoid transfer function transfer function for hidden and output layers. The error distributions of data revealed that experimental results are in very good agreement with computed ones with only 2% data points had absolute relative error greater than 20% for the microfiltration without static turbulence promoter whereas for the microfiltration with static turbulence promoter it was 1%. The contribution of filtration time variable to flux values provided by ANNs was determined in an important level at the range of 52-66% due to increased membrane fouling by the time. In the case of microfiltration with static turbulence promoter, relative importance of transmembrane pressure and feed flow rate increased for about 30%.

Changes in Feed Value of Barley and Pea by Different Seeding Rates and Cutting Dates in Mixed Sowing Cultivation (보리와 완두의 혼파재배에서 혼파비율과 예취시기에 따른 사료가치의 변화)

  • Oh, Tae-Seok;Kim, Chang-Ho;Lee, Hyo-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This study carried out to find out feed value of barley plus pea mixture with different ratio and cutting date to got basic information when introduced the mixture as new cropping system in middle part of Korean peninsular. Dry matter (DM) yield increased as barley seeding rate was higher and showed the highest yield in the plots with barley 85% plus 15% ratio when harvested on May 16. There was no different in crude protein, available protein and digestible protein cutting on April 25 in every mixture, but the content increased with higher pea mixture rate after May 2. The content of acid detergent fiber (ADF) and neutral detergent fiber (NDF) increase coincided with higher barley rate and late cutting dates. But relative feed value (RFV) resulted in opposite trend. Higher pea ratio influenced increased content of total digestible nuterients (TDN), but decreased before May 9 cutting and increased after the next cutting regime. There was no statistical difference in P and Mg between sowing rate, but Ca increased at higher pea ratio and P, Ca, K decreased in all plots as harvests were delayed. The content of estimated net energy (ENE), net energy maintenance (NEM) and net energy gain (NEG) significantly increased with higher pea rate and earlier cutting. But net energy lactation (NEL) was no significant differences between seeding rates and cutting dates. In conclusion, mineral yield such as P, Ca, K and Mg showed the highest yield at barley plus pea ratio of 75 : 25 and energy yield of ENE, NEL, NEM, NEG and TDN was the highest at 85 to 15 mixture plots and DM yield, TDN yield, mineral yield such as P, Ca, K and Mg and energy yield of ENE, NEL, NEM, NEG were the highest on each treatment cutting on May 16.

Effect of Rooming-in of New Mothers on Breast Feeding Rate (모자동실적용이 초산모의 모유수유율에 미치는 영향)

  • Kim, Il-Ok;Wang, Hee-Jung
    • Women's Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Purpose: This study was done to identify that Rooming-in of new mothers have an influence on continuous breast feeding. Method: This is a comparative survey study which was done by self reported questionnaire and telephone contacts. The subjects are collected from two groups which consist of 29 in Rooming-in group and 24 in Non-Rooming in group respectively. The data were collected method of this study was lists of given to mothers while they were in the hospital and interviews by telephone were done at their home 3 months and 6 months after delivery. Result: The results of this study were as follows: 1. The rates of breast feeding were 79.3% in the Rooming-in group and 41.7% in the non-Rooming in group after 3 months. There was a statistically significant difference between the two groups ($X^2$=10.217, p=.009). 2. The rates of breast feeding were 69.0% in the Rooming-in group and 29.2% in the Non-Rooming-in group at 6 months. There was a statistically significant difference between the two group ($X^2$=10.310, p=.012). Conclusion: Rooming-in system provoke an increase of the breast feeding rate in new mothers and encourage them to keep breast feeding. In addition, it would be desirable that hospitals apply Rooming-in system actively and encourage new mothers to breast feed for 24 hours a day. It could be make breast feeding successful.

  • PDF

STRATEGIES TO REDUCE ENVIRONMENTAL POLLUTION FROM ANIMAL MANURE: PRINCIPLES AND NUTRITIONAL MANAGEMENT - A REVIEW -

  • Paik, I.K.;Blair, Robert;Jacob, Jacqueline
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.615-635
    • /
    • 1996
  • The animal industry must be environmentally sound to ensure its long-term sustainable growth. Livestock wastes mostly manure, can be a valuable resource as well as a potential hazard to environment. The first option of manure management is developing an 'environmentally sound' feeding program and feeds so there are less excreted nutrients that need to be managed. Once the manure is produced it can be best utilized as a fertilizer of a soil conditioner. In many countries the amount of manure that can be spread on land depends on the nutrient requirements of the crop being grown. The laws specify maximum application rates and not animal stocking rates. Farmer who reduce the N and P component of manure can release pressure on the environment without having to reduce the number of animals. There are alternative system for housing and manure treatment which generate manure that are easier to handle and have less pollutants or more economic value. Treated animal waste may also be used as a feedstuff or fuel source. Most of the options of waste management result in increased costs to implement. It is necessary to assess the economics in order to find an acceptable compromise between the increased costs and the benefit to the environment. Animal welfare is also becoming more and more of an issue and it will lead to systems where animals are kept in less confined environment. The new system will have a great impact in the waste management system in the future.

Study on Optimal Working Conditions for Picking Head of Self-Propelled Pepper Harvester by Factorial Test

  • Kang, Kyung-Sik;Park, Hoon-Sang;Park, Seung-Je;Kang, Young-Sun;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Purpose: Pepper prices have risen continuously because of a decrease in cultivation area; therefore, mechanical harvesting systems for peppers should be developed to reduce cost, time, and labor during harvest. In this study, a screw type picking head for a self-propelled pepper harvester was developed, and the optimal working conditions were evaluated considering helix types, winding directions of helix, and rotational speeds of the helix. Methods: The screw type was selected for the picking head after analyzing previous studies, and the device consisted of helices and a feed chain mechanism for conveying pepper branches. A double helix and a triple helix were manufactured, and rotational speeds of 200, 300, and 400 rpm were tested. The device was controlled by a variable speed (VS) motor and an inverter. Both the forward and reverse directions were tested for the winding and rotating directions of the helix. An experiment crop (cultivar: Longgreenmat) was cultivated in a plastic greenhouse. The test results were analyzed using the SAS program with ANOVA to examine the relationship between each factor and the performance of the picking head. Results: The results of the double and triple helix tests in the reverse direction showed gross harvest efficiency levels of 60-95%, mechanical damage rates of 8-20%, and net marketable portion rates of 50-80%. The dividing ratio was highest at a rotational speed of 400 rpm. Gross harvest efficiency was influenced by the types of helix and rotational speed. Net marketable portion was influenced by rotational speed but not influenced by the type of helix. Mechanical damage was not influenced by the type of helix or rotational speed. Conclusions: Best gross harvest efficiency was obtained at a rotational speed of 400 rpm; however, operating the device at that speed resulted in vibration, which should be reduced.

Evaluation of flux stabilisation using Bio-UF membrane filter on KZN Rivers, South Africa

  • Thoola, Maipato I.;Rathilal, Sudesh;Pillay, Lingam V.
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2016
  • South Africa recognises piped water as the main source of safe drinking water supply. Remote areas do not have access to this resource and they rely solely on surface water for survival, which exposes them to waterborne diseases. Interim point of use solutions are not practiced due to their laboriousness and alteration of the taste. Bio-ultra low pressure driven membrane system has been noted to be able to produce stable fluxes after one week of operation; however, there is limited literature on South African waters. This study was conducted on three rivers namely; Umgeni, Umbilo and Tugela. Three laboratory systems were setup to evaluate the performance of the technology in terms of producing stable fluxes and water that is compliant with the WHO 2008 drinking water guideline with regards to turbidity, total coliforms and E.coli. The obtained flux rate trends were similar to those noted in literature where they are referred to as stable fluxes. However, when further comparing the obtained fluxes to the normal dead-end filtration curve, it was noted that both the Umbilo and Tugela Rivers responded similarly to a normal dead-end filtration curve. The Umgeni River was noted to produce flux rates which were higher than those obtainable under normal dead-end. It can be concluded that there was no stabilisation of flux noted. However, feed water with low E.coli and turbidity concentrations enhances the flux rates. The technology was noted to produce water of less than 1 NTU and 100% removal efficiency for E.coli and total coliforms.

COPRA MEAL AS A SUPPLEMENT TO CATTLE OFFERED A LOW QUALITY NATIVE PASTURE HAY

  • Hennessy, D.W.;Kempton, T.J.;Williamson, P.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.2
    • /
    • pp.77-84
    • /
    • 1989
  • Twenty-four Hereford steers, 22 months old and a mean liveweight (${\pm}\;s.e.$) of $250\;{\pm}\;7\;kg$ were used in an experiment to evaluate over 42 days two rates of copra meal supplementation to cattle on a low N ($8.6\;{\pm}\;0.9$ g N/kg dry matter (DM)), low digestible ($45\;{\pm}\;5.2%$ DM) native pasture hay. Steers given the two rates (500, 1000 g/steer/day; i.e. 500C, 1000C) were compared to steers on a non-supplemental diet and to the effects on steers of supplemental urea (30g/steer/day; 30U) or with copra meal (500 g/steer/day; 500C.U), or of cottonseed meal (500 g/steer/day; 500S). Liveweight change was increased (P<0.01) by all of the supplements except by supplemental urea. The most effective treatment, 1000C, increased significantly (P<0.01) liveweight change (946 g/day) in steers above all supplements except those steers given 500C.U (718 g/day). Hay intake per unit liveweight was increased (P<0.05) by 7% by the 30U and 500C.U treatment, and by 9% by 500C; this group having the highest supplements, being greatest (P<0.05) for the 1000C group (6.0 g feed intake/g gain) and least for the 500S supplemented group (11.5 g/g gain). Efficiency was lowest (18.6 g/g gain) for the non-supplemented steers on the basal hay diet. Copra meal N was less degradable (i.e. 29%) in nylon bags over 15 hours in the rumen than was cottonseed meal N (37%), and rumen ammonia concentrations were lower (P<0.05) in cattle supplemented with copra meal (25, 27 mg N/L) than in cattle given urea (36 mg N/L) or cottonseed meal (39 mg N/L). It is concluded that copra meal at a daily rate of 500 g/head, and with rumen soluble nitrogen from urea, is an effective supplement for improving growth of cattle on a low quality forage.